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ABSTRACT 

In terms of manpower, time and money, the single largest 

investment that must be made in the acquisition and 

maintenance of a large and complex computer system is the 

investment made in software. In response to this situation, 

**h-e- DOD began an intensive and comprehensive research and 

development effort in an attempt to reduce, if not eliminate 

the inherent problems associated with software system design. 

The end result of this effort was the creation of the Ada 

programming language. This thesis will examine the 

development of the language, focusing attention on the 

concepts and features which make Ada a potential "software 

crisis" solution. These concepts and features will be 

further examined as to the extent to which they support the 

utilization of  Ada  as  a  program  design  languagef(PDL). 
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I.  INTRODUCTION;  BRIEF HISTORY OF THE DEVELOPMENT OF ADA 

A.  BACKGROUND:  THE SOFTWARE CRISIS 

In terms of manpower, time and money, the single largest 

investment that must be made in the acquisition and 

maintenance of a large and complex computer system is the 

investment made in software. During the last thirty years 

the cost per executed instruction of computer hardware has 

declined by a factor of two every two to three years; while 

the relative cost of software has increased dramatically, 

from under 20% of total computing costs in 1960 to cover 30% 

of those costs in 1980. The increasing ratio of software to 

hardware costs is most acutely demonstrated in complex 

embedded computer systems developed for and used by the 

Department of Defense. In 1973 over 50% of the DOD's total 

software expenditures were dedicated to embedded systems, and 

today that figure is significantly higher. Coupled with this 

is the fact that complex embedded software projects have 

frequently experienced substantial cost and schedule overruns 

and have sometimes had to be abandoned altogether because 

their sheer complexity resulted in project attempts which 

became altogether unmanageable [Ref. 1: p. 6]. 

The term "software crisis" was coined in the late sixties 

to describe what was becoming a wholly untenable situation. 

Thousands of programmers and analysts using hundreds of 

. . . .. 
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languages for use on hundreds of computers with untold 

variations in applications resulted in an overall software 

picture within DCD that was simply beyond comprehension, let 

alone management. In response to this situation, the DOD 

began in 1975 what- was to become one of the most 

comprehensive and forward looking programs in the history of 

software engineer ing--tl-e development of the Ada language 

[Ref. 2]. 

Prior to 1975 it was realized within DOD that one of the 

greatest problems afflicting ':he management and use of 

computer software *as that there were simply too many 

different software languages in use (roughly 400, counting 

all languages and dialects in use at that time). The great 

diversity of languages in use, coupled with the wide variety 

of applications required by DOD embedded software systsms, 

resulted in the fact that portability of software between 

systems was in most cases impossible. Additionally, since 

DOD embedded systems tended to be very complex, each system 

tended to become an island unto itself regarding the system's 

acquisition, maintenance and personnel support resulting in 

the need for specialized tools and personnel training for 

each system. 

B.  THE HIGH ORDER LANGUAGE WORKING GROUP 

The multiple language problem begged as its logical 

panacea the formulation or adoption of a single software 

10 
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1 
language which could be utilized on all embedded system 

software applications. The DOD reasoned that if a universal 

language could be adopted, substantial gains in the control 

over such problems as non-portability, extensive maintenance 

and programmer training expenditures, and software 

understandability could be achieved. To address the problem 

of multiple languages, as well as to attempt a reasonable 

solution to that problem, the High Order Language Working 

Group (HOLWG) was formed in 1975 with representatives from 

the Army, Navy, Air Force, Marines and other Defense 

agencies. The  HOLWG's charter was to explore and identify • 

the DOD's requirements for computer programming languages, 

evaluate existing languages then being used by the DOD, and 

finally to recommend the implementation and control of a t\ 

"minimal set" of languages for use throughout the DOD. 

During 1975 and 1976, HOLWG undertook an extensive require- 

ments analysis process in accordance with its charter, j| 

beginning with the publication of STRAWMAN, which was essen- 

tially a questionnaire with which to stimulate comments from 

the field. In August of 1975 the WOODENMAN document was ' 

written which summarized the comments and recommendations 

received through STRAWMAN. Further solicitation of comments 

from worldwide sources followed, and the results were again 

analyzed, leading up to the publication of TINMAN, which was 

h 

h 
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a complete set of requirements for the intended universal 

language. 

The research up to this point had revealed that though 

the differences in embedded system software applications were 

substantial, the programming language requirements for a 

broad spectrum of those applications were remarkably similar. 

It was, for instance, clear that for all applications, such 

programming methodology attributes as top-down design, 

structured programming and information hiding were desirable 

features to utilize as these features enhanced management's 

ability to improve programmer productivity, system 

reliability and overall system control. In addition these 

features were seen as essential toward making possible the 

development of advanced programming tools with the potential 

to significantly improve the productivity of DOD software 

engineers. 

The publication of TINMAN in January of 1976 was followed 

by an intensive examination of existing languages, and a 

formal evaluation of those languages against the requirements 

spelled out in TINMAN. As might be expected, no single 

existing language was found acceptable as meeting those 

requirements. The primary reason for this is that each 

language was irretrievably entangled within the application 

it supported,  and in most cases the different languages  and 

12 
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dialects were initially designed for a specific application, 

and only later applied to a broader applications base. 

Although no existing language was recognized as being 

capable of adoption as a universal DOD computer language, the 

HOLWG did recognize an immediate need to stop the prolifera- 

tion of newer, though technically similar languages in the 

acquisition and maintenance of embedded system software pro- 

jects. In April of 1976 the DOD released Directive 5000.29, 

which restricted all projects to "DOD approved high order 

programming languages" unless cost effectiveness or technical 

practicality was significantly impaired over the system's 

life cycle in complying with that directive. More specifi- 

city was offered by DOD Directive 5000.31 in November, 1976, 

in that this directive specifically listed the languages 

authorized for use -by the DOD. Those languages are FORTRAN 

and COBOL (DOD), TACPOL (Army), CMS-2 and SPL/1 (Navy), and 

JOVIAL (Air Force). The issuance of these directives was 

intended only as an interim measure rather than a long term 

solution to the underlying problem of too many embedded 

system computer languages, and as such the directives served 

only to thwart the development of additional and assumably 

unnecessary new programming languages. Given that a consider- 

able amount of investment had already taken place in these 

approved languages, there was little immediate need to 

replace them in their present applications. 

13 
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C.  THE NEED FOR A SINGLE PROGRAMMING LANGUAGE 

But the basic questions still remained: was it feasible 

to develop a universal language, and of the many languages in 

use both within and outside the DOD , which if any language 

would best serve as a model to emulate in the development of 

a new language. In answering the first question the DOD 

performed two independent cost benefit analyses, both of 

which concluded that it was appropriate to undertake the 

development of a new universal language which fully met the 

TINMAN requirements. The ultimate benefits possible from such 

an undertaking would most likely range in the hundreds of 

millions of dollars in personnel training savings, and 

savings realized through greater use of compilers and other 

software tools. Toward an answer to the second question, the 

HOLWG was tasked with executing the development of a common 

language, while program management responsibility rested with 

the Defense Advanced Research Projects Agency (DARPA). The 

criteria imposed on the HOLWG were that it develop a 

language commensurate with state-of-the-art technology and 

design methodologies and that it develop a language of high 

enough quality so as to be attractive to interests outside 

the defense industry, including (it was hoped) industry, 

universities, foreign vendors and NATO allies. 

In January, 1977, the IRONMAN document was published as a 

requirements definition for the new common language, and this 

14 
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document served as the criterion for an international 

competition against the Request For Proposal issued in April 

of that year. Seventeen vendors responded to the RFP, from 

which four were selected to proceed with further design. All 

four vendors indicated an intention to use the programming 

language PASCAL as a starting point in their respective 

development efforts. Preliminary design efforts were to be 

measured against the REVISED IRONMAN requirements definition 

document, which was released in July of 1977. Evaluation of 

the preliminary designs was accomplished by distributing the 

preliminary designs among approximately eight DOD and non-DOD 

evaluation teams from the United States, Europe and the 

United Kingdom. This Phase 1 evaluation resulted in the 

selection of two of the four vendors for continued 

development, and in June of 1978 the final requirements 

document, STEELMAN, was issued. In March of 1979 the final 

designs were issued from the two competing vendors, CII- 

Honeywell Bull and Intermetrics. 

Again the proposed designs were distributed among 

evaluation teams around the world for comment, and software 

engineers from many disciplines were invited to meet with and 

question the designers to better understand their design 

rationale. The results of these meetings, the comments 

received from the evaluation teams, and an intensive analysis 

15 
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by the different DOD interests resulted in the selection of 

CII-Honeywell Bull in April of 1979. 

Up to this time no official name had been given the new 

language, though the industry press had unofficially dubbed 

the name DOD-1. HOLWG objected to the inclusion of any 

reference to the Department of Defense in naming the new 

language, as such reference could have the effect of 

discouraging acceptance and use of the language in the non- 

military marketplace, and one essential objective of HOLWG 

was to specifically enhance the possibility of acceptance in 

that marketplace. The language name Ada was adopted in the 

Spring of 1979 in honor of Agusta Ada Byron, famous in her 

role as the first "computer" programmer. 

In June of 1978 the SANDMAN document was issued, which 

addressed the need to develop an integrated system of 

software development and maintenance tools along with 

development of the language itself. HOLWG reasoned that 

though no special environment would be needed to use Ada, the 

acceptance of the language and the potential benefits 

possible from the development of the language could be 

greatly enhanced with the implementation of a standardized 

programming environment. SANDMAN was reviewed as to its 

intent and possible alternatives at a workshop jointly 

sponsored by the Army, Air Force, Navy and University of 

California at Irvine in late June, and this workshop resulted 

16 
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in the preliminary draft statement of Ada environmental 

requirements, PEBBLEMAN, in July, 1978. This document 

described all aspects of the Ada environment, including 

language standards, policy, configuration control, compiler 

validation and software and management tools. After wide 

dissemination for comments as to its contents, PEBBLEMAN was 

revised in January, 1979, to reflect the concerns mentioned 

by those submitting comments. 

D.  THE ADA PROGRAMMING SUPPORT ENVIRONMENT 

.^ set of technical requirements for what was designated 

the Ada Program Support Environment (APSE) was published and 

distributed in November, 1979, as Preliminary STONEMAN, along 

with invitations to selected interests to attend an AP3E 

workshop on 27-29 November, 1979, in San Diego. Ac this 

workshop, two hundred and twenty (220) industrial, research, 

academic and government participants contributed opinions and 

recommendations as to the APSE, and the results of the 

workshop were reflected in the final STONEMAN document which 

was published in February 1980. The STONEMAN requirements 

document delineated the structure and content of necessary 

elements to an embedded Ada system, including the support 

system of the host machine and the run-time system on the 

target machine. Considerable emphasis in STONEMAN is placed 

on the standardization and coordination of a well defined set 

of tools and uniform interfaces within the APSE to enhance 

17 

*•*' ••' **• *' *" •"—•* -* •' *—.-..»- ,'.- .;.:*, *'.*'•      •      , ,„,—t.i ;,„,„ .........    ^    .. _ _.    . 



• - -.- •    . .  - - - - - - .-.,- -.- - -.. • - •> •• < ----- —^-^-.-^ "--.- 

Ada programming support throughout its life cycle. Such 

uniform conventions, with ^da used to implement the APSE, 

would also enhance such desirble system attributes as 

portability, modularity, uniformability and understand- 

ability. In addition to the APSE, STONEMAN delineated the 

Kernel Ada Programming Support Environment (KAPSE) to ensure 

standardization of the environment made available to the APSE 

(and therefore ensure APSE portability) in the event more 

than one APSE evolved. STONEMAN also defined a Minimal Ada 

Program Support Environment (MAPSE) as a minimum set of 

functions which an APSE should perform. As defined by the 

MAPSE, the minimal APSE should be able to create database 

objects, produce new objects which are records of analysis of 

other objects, transform objects from one representation to 

another, support object display, parse, link, load and 

execute. 

In addition to development of the Ada language and the 

support environment within which it will reside, the DOD is 

encouraging and funding the development of compilers to 

interface the Ada language with the intended object machines 

on which the language code will be processed. Individual 

efforts are being made by each of the DOD branches so as to 

best match branch (Army, Navy, Air Force) needs with the 

overall development of the Ada language. Perhaps more 

importantly, the DOD wants to encourage the use of Ada for 
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exploratory development and advanced development projects 

even before the military service and accredited industry 

production quality compilers are available. As an example, 

the Defense Advanced Research Projects Agency (DARPA) funded 

Intermetrics Corporation (the vendor eliminated during the 

Phase 2 language development vendor selection process) to 

develop a test compiler to run on the DEC-20, using the test 

translator it had developed during the Phase 2 language 

design effort. Though the formal intent (and investment; of 

the DOD is to develop compilers and other tools which will 

serve the needs of the developers and maintainers cf software 

for execution on military computers, there is a recognized, 

though less formal, intent to make available to commercial 

vendors the compiler products developed under the military 

umbrella. This attitude is consistent with one of the 

initial criteria imposed by the DOD on HOLWG; that of 

creating a language of high enough quality so as to be 

attractive to commercial and other interests outside the 

military arena. To this end, the DOD has attempted to 

enhance military-industrial communication by offering 

compilers, programming tools and compiler test sets upon 

their completed development to commercial vendors, with the 

proviso that such vendors pay a nominal fee for distribution 

and submit trouble reports to the DOD when trouble with the 

unit is recognized.  In addition, Ada software developed by 
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the DOD (except that software belonging to the core Ada 

development and introduction program) will be available to 

commercial vendors on an unlimited basis, unless it is 

determined that procurement by the vendor under limited 

rights (and DOD's right to redistribute) would result in 

significant savings to ehe government. It is reasoned by the 

DOD that encouraging interaction between the military and 

non-military interests involved or potentially involved in 

the Ada language and its surrounding environments and tools, 

will foster the growth and acceptance of Ada in the non- 

military environment. 

E.  EDUCATION IN THE ADA LANGUAGE 

Commensurate with the development of any new programming 

language is the need to address the education of those who 

will be responsible for the development and maintenance of 

that new language. This need is brought into even greater 

focus with Ada, since Ada incorporates new concepts and 

facilities as yet unseen in prior programming languages. To 

begin with, Ada is perhaps the first programming language 

where the system goals of modifiability, efficiency, reli- 

ability and understandability were specifically and formally 

recognized as necessary goals of the language prior to the 

initial design of the language. In support of these goals, 

the software design principles of modularity, abstraction, 

information hiding, localization, uniformity, completeness 
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and confirmability were also specifically recognized as 

necessary elements   to  the  language  prior   to   its   design. 

With these design goals and principles established as a 

backdrop to the Ada design effort, certain specific and, in 

most cases, unique design characteristics evolved out of the 

Ada design endeavor. These characteristics include an 

object-oriented design methodology, strong type-checking 

across module boundaries, packages for specifying logically 

related collections of resources, high-level concurrent 

programming facilities, tasking to permit communicating 

sequential processes, and a system framework wherein the 

language itself and the support environment within which it 

resides are seen as a "unit". 

Together, these goals. principles and design 

characteristics provide a novel training opportunity to 

present a coordinated view of modern programming practices, 

and to this end, the HOLWG established a Subcommittee on 

Education and Training in March of 1979. The guiding 

philosophy of the Subcommittee on Education and Training has 

been that Ada represents the cutting edge of a new software 

technology that will inevitably result in a more structured 

working environment for programmers and program managers, and 

an environment that will require the adoption of interface 

conventions which will, to a large part, rely on modules 

developed by others.     It  is  not  enough  to  accomplish  local 
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changes in existing language programs if the proper use of 

Ada's novel features are to be realized, though spinoff 

courses such as "Ada for FORTRAN programmers" or "Ada for 

Pascal programmers" will undoubtedly appear. Rather, Ada 

requires the programmer to internalize a top-down, modular 

approach to program design that results in programs whose 

structure is substantially different from existing high level 

or assembly language programs. The new style of modular 

thinking required for the effective design and use of Ada 

programs is more difficult to teach than the syntax and 

semantics o£ the language itself. This is in large part due 

to the fact that many of the issues involved in teaching the 

Ada design methodology are language independent; while the 

Ada language provides linguistic support for the modern 

software technology on which it is based, the underlying 

software methodology and problem-solving techniques are' 

themselves independent of Ada or any other particular 

language. This "independency" between language and software 

methodology was not by accident. Rather, it was specifically 

intended by the HOLWG as a means to more easily accomplish 

the possible transition from Ada to whatever future languages 

that might come along. The HOLWG reasoned that though 

languages may come and go, a sound and well designed system 

of underlying software methodology and problem solving 

techniques will stand a better chance of survival over time 
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and will provide a standard and foundational basis with which 

to describe the desirable properties of programming languages 

in general, as well as a basis from which future programming 

languages in particular can be developed. 

The threshold, then, to be overcome in the training of 

programmers and program managers in the Ada language is 

substantially higher than that of previous languages, as Ada 

demands an understanding of its underlying philosophy and 

approach prior to the understanding of its syntax. This is 

truly a "macroscopic" approach to language design, since it 

forces the programmers and program managers to maintain a 

perspective on the language which sees the language as merely 

a vehicle with which to enforce the far more important 

philosophy behind the language and the goals and principles 

supporting the language. This approach has the added benefit 

of forcing the designers and users of Ada to consider the 

effects of using Ada as a programming language for any 

specific project over the project's entire life cycle rather 

than in piecemeal fashion. 

To meet the Ada training challenge, the Subcommittee on 

Education and Training is coordinating various individual and 

coordinated training programs among the components of the DOD 

and, in addition, is endorsing education and training 

endeavors within the commercial and academic sectors both at 

home and abroad. 
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F.  ADA AS A "SOLUTION" TO THE SOFTWARE CRISIS 

There is little doubt that the development of Ada has 

caused considerable commotion in the computer software arena. 

Some would argue that the horse is finally once again ahead 

I of the cart in software development in that with Ada there 

seems to have been no   expense spared in laying a 

comprehensive and foundational design strategy and framework 

1 prior to designing the language syntax itself.  Ada appears 

to represent for the first time an attempt to build a 

fundamentally new software design philosophy rather than just 

• another "new" but, in fact, patchwork software language.  The 

software crisis is with us and will remain so for many years 
, • 

.* 
to come, but the injection of the Ada language into that 

• crisis will at least slow what is now an uncontrollaole rate 

of growth of that crisis.  This, of course, assumes that both 

DOD and non-DOD interests continue with their efforts on what 

appears to be the right path. 
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II.  SOFTWARE ENGINEERING CONCEPTS UTILIZED IN THE 
DEVELOPMENT OF ADA 

The fundamental reason for the existence of the "software 

crisis" is due to the unmanageable complexity of software 

systems in general. As tools for software development 

improve and as software system design experience increases, 

this situation is clearly becoming more difficult to deal 

with as newer and greater problems arise. A solution for 

reducing the complexity of software systems is attainable 

through close adherence to the goals and methodologies of 

software engineering supported by a high order language that 

promotes and enforces these principles. 

Software engineering is modeled on the techniques, 

methods and controls associated with hirdware development. 

Although fundamental differences do exist between hardware 

and software, the concepts associated with planning, develop- 

ment, review, and management control are similar for both 

system elements. The key objectives of software engineering 

are (1) a well defined methodology that addresses a software 

life cycle of planning, development and maintenance; (2) an 

established set of software components that documents each 

step in the life cycle and shows traceability L^om step to 

step; and (3) a set of predictable milestones that can be 
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reviewed at regular intervals throughout the software life 

cycle [Ref. 3: p. 15]. 

The purpose of this chapter is to delineate ehe goals of 

software engineering and discuss the associated principles 

that enable software system designers to attain them 

[Ref. 4], This chapter will also discuss software 

development techniques and tools that utilize these software 

engineering principles in the design of software systems. 

A.  THE GOALS OF SOFTWARE ENGINEERING 

The most fundamental goal in the design of software is to 

ensure that the resultant product satisfies the designated 

requirements. unfortunately, there often arises a misinter- 

pretation of the user's stated requirements by the system 

impiemencers. As a result of this ui is under standing, changes 

in requirenents during the life cycle of a software system is 

inevitable. 

The acceptance of the inevitability of changes in 

requirements during software development has resulted in the 

establishment of a set of goals that overcome the effects of 

such change. Four properties that are sufficiently general 

to be accepted as goals for the entire discipline of software 

engineering are modifiability, efficiency, reliability, and 

understandability. 
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1. Modifiability 

The goal of modifiability is the most difficult goal 

to master and to measure. Modifiability implies controlled 

change, in which some parts or aspects remain the same while 

others are altered, all in such a way that a desired new 

result is obtained. Modification during software development 

may occur as a result of a change in the system requirements 

or in response to the correction of an error made earlier 

during the development phase of the system. 

The modification of a system must take into 

consideration the maintenance of structural integrity. If 

this consideration is ignored during modification, the 

software will become segmented, resulting in a potential loss 

of logical flow. This will invariably lead to the original 

design becoming vague and unintelligible, making follow-on 

modification to the system very difficult. The key to system 

modifiability is that it should promote the ability to change 

the software without enlarging the complexity of the system. 

2. Efficiency 

In well engineered systems there is a natural 

tendency to use critical resources efficiently [Ref. 3: 

p. 284], These resources are classified into two basic 

groups—time and space resources. Time resources are 

generally concerned with process execution in a predetermined 

timeframe;  hence,  they tend to be hardware dependent. 
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However, selection of the proper software algorithms will 

3 obviously enhance the time of execution.  Space resources are 

: • concerned with the physical side of the execution process. 

|\ Embedded systems are often required to consider both 

I classifications to promote efficiency.  If the embedded 

system is concerned with real events, time resource 

efficiency becomes paramount. If the embedded system is 

constrained by the physical size of the existing hardware, 

then space resources become the overriding concern. Most 

often, the efficient use of the two classifications at the 

same   time   is  not attainable  and  a   tradeoff must occur. 

In order for efficiency to be attained in a system, 

it must be considered throughout the entire system 

development and not just in the early phases as is most 

common. Insights reflecting a more unified understanding of 

a problem have far more impact on efficiency than any amount 

of "bit twiddling" within a faulty structure. 

3.     Reliability 

As more and more computer systems are being developed 

to operate for long periods of time with minimum operator 

interference, reliability of the system is taking on greater 

importance as the price of system failure reaches 

unacceptability. Reliability must both prevent failure in 

conception, design, and construction, as well as recover from 

failure   in operation or  performance. 
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As with efficiency, reliability must be a concern 

throughout the entire software development program. Most 

often reliability is considered too late, or not at all, in 

most software development efforts. Reliability can only be 

built in from the start; it cannot be added on at the end. 

Hence, reliability has a pervasive and crucial effect on 

software engineering practices. A well engineered, reliable 

computer system must fail gracefully with little or no effect 

to  the  system overall. 

4.     understandability 

Understandability is the key to the proper management 

of the complexities inherent to software systems. Under- 

standability is not exclusively a property of legibility. 

The entire conceptual structure is involved. 

Understandability bridges the true system with the perceived 

system. Although understandability is a prerequisite to 

reliability and modifiability, it is also important as a goal 

in itself because it draws attention to the complexity of the 

system. The only way to achieve understandability is to 

impose clearly notated structure and organization on the 

system. 

System understandability is further enhanced from the 

impact on the system from various levels in the structure. 

From the lower levels, proper coding styles lend themselves 

to understandability.    At the higher  levels,   the ability to 
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expedite the segregation of various algorithms and data 

structures aid in understandability attainment. 

B.  THE PRINCIPLES OF SOFTWARE ENGINEERING 

The software engineering goals are clearly applicable to 

most if not all software systems. These goals, however, are 

not attainable simply through utilization of any software 

development methodology. In order to achieve these goals, 

the software development approach must be highly structured, 

well disciplined and closely adhere to a basic set of soft- 

ware engineering principles that support these goals. The 

principles of software engineering include abstractions, 

information hiding, modularity, localization, uniformity, 

completeness, and confirmability. Proper utilization of 

these software engineering principles can result in the 

development of a software system that is modifiable, effi- 

cient, reliable, and understandable. 

1.  Abstraction 

As stated previously, the inability to manage ehe 

complexity of software systems is the primary cause of the 

"software crisis." Abstraction lends itself to managing the 

complexity. Abstraction exists in varying degrees throughout 

all levels of the systems hierarchial structures. Each level 

of abstraction is built from lower levels which in turn were 

built from even lower levels in the hierarchy. In developing 

software systems, the level of abstraction that satisfies the 
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stated requirements is utilized. The essence of abstraction 

is to extract essential properties while omitting unessential 

details. The levels of abstraction formed through 

hierarchial decomposition display an abstract view of the 

lower levels purely in the sense that details are subor- 

dinated to the lower levels. The principle of abstraction 

ensures that a given level in a hierarchial decomposition is 

understandable as a unit, without requiring either knowledge 

of lower levels of detail or necessarily how it participates 

in the software system as viewed from a higher level. 

2.     Information Hiding 

Information hiding enforces the abstraction prin- 

ciple. Where abstraction was concerned with the extraction 

of essential details of a given level, the purpose of infor- 

mation hiding is to make inaccessible certain details that 

should not affect other parts of a system. Abstraction helps 

to identify details that should be hidden, while hiding is 

concerned  with  defining  and  enforcing  access  constraints. 

The application of the information hiding principle 

in conjunction with the abstraction principle promote goal 

achievement. These two principles, besides encouraging 

system efficiency, assist in the maintainability and under- 

standability of a software system through reduction in the 

amount of specific details a system programmer would be 

requested    to    know    at    any    particular    level.        System 
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reli ability is also elevated throu gh the application of these 

* 
two principles , for at each leve 1 only certain pr sdef ined 

• operations are permitted to occur preventing any inadvertent 

operation from taking place that could violate the logical 

structure of that level. 

3. Modularity 

It has been stated that modularity is the single 

attribute of software that allows a program to be 

intellectually manageable [Ref. 5]. Modularity is concerned 

with the dividing of a program into suboragrams (modules) 

which can be compiled separately. Modularity yields a 

hierarchial structure, for when decomposition of the software 

systam occurs levels of program modules are created. 

In utilizing a top down approach in software design, 

a decomposition of each successive level into distinct 

functional modules will occur. Most often, higher level 

modules are related to high level abstractions, and therefore 

are generally machine independent. In addition, a higher 

level module will specify what action is to be taken, while 

the lower level modules define how that action is to be 

carried out. Lower level modules are generally machine 

dependent. If a bottom-up approach to software design is 

initiated instead, decomposition of the system begins at the 

bottom of the hierarchy resulting in the creation of highly 

complex modules at the top of the system. 
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The key to the enhancement of system reliability 

through the use of modularity is to ensure that a well 

defined interface exists between each module. A well defined 

interface is an explicit set of assumptions one program 

module makes about another. These interfaces are the "connec- 

tions" between modules. A measure of the strength of these 

interconnections among modules is known as coupling. Loosely 

coupled modules are most preferred for they result in greater 

modular independence. Cohesion is another modular measurement 

which defines how tightly bound or related its internal 

elements are to one another within the module proper [Ref. 6: 

p. 85]. Strong cohesion within individual modules is most 

desirable for it implies that the components of a particular 

module are functionally and logically dependent. 

4.   Localization 

The principle of localization assists in developing 

program modules which demonstrate loose coupling and strong 

cohesion. The principle of localization is concerned with 

physical proximity where related elements are brought toge- 

ther all in one module resulting in a reduction in resource 

redundancy. Through the use of the localization principle, 

logically related items are collected into one physical 

module, forming a module that exhibits strong cohesion. The 

localization principle also implies modular independence, 

resulting   in  a much desired  loosely coupled  system. 
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The principles of localization and modularity lend 

themselves greatly to the attainment of the goals of software 

engineering. If a software system is developed through the 

implementation of these principles, then the understand- 

ability of any particular module should be possible 

independent of the other modules in the system. Subse- 

quently, since these principles tend to localize design 

decisions into pre-defined modules, the effects of modifica- 

tion to the system can be minimized to a smaller more 

manageable collection of modules. The goal of system 

reliability is enhanced due to the face chat the proper asa 

of these principles will result in a reduction in ehe number 

of modular interfaces. v 

5.  Uniformity 

The uniformity principle is directly related to the 

software engineering goal of understandability. Uniformity 

is concerned with intermodule notational consistency in areas 

such as naming conventions, code structure, interface 

descriptions, etc. Uniformity is achieved through the use of 

proper coding techniques, where application of a consistent 

control structure and calling sequence for operation is 

utilized and where the depiction of logically related items 

are identical at any particular level. 

•: 
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6. Completeness 

The purpose of this principle is to ensure that all 

essential elements have been included in the software system 

development. Completeness is achieved through proper 

iterative design procedures through the system development 

phases. Completeness in combination with the abstraction 

principle, results in the development of necessary and 

sufficient modules supporting the goal cf reliability. 

Completeness also enhances the efficiency goal, because it 

becomes possible to adjust a lower level module without 

affecting  modules   in  the  higher   levels. 

7. Confirmability 

The principle of confirmability is concerned with 

achieving stated goals contained in the software system 

requirements and specifications. It is, therefore, paramount 

to ensure that system requirements are accurate and that 

system specifications are testable. Confirmability implies 

that decomposition of the software system must occur so that 

it can be readily tested resulting in a system that is 

modifiable. This principle is most commonly realized through 

ehe use of informal software system reviews such as 

structured walkthroughs   [Ref.   3:   p.   141]. 
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C.  SOFTWARE DEVELOPMENT DESIGN METHODOLOGIES 

Software engineering principles will, when correctly 

applied, achieve software engineering goals. However, these 

principles cannot be implemented in a casual, hit or miss 

fashion. As software systems are becoming more and more 

modularized, a uniform system decomposition standard must be 

adhered to. 

There are generally four recognized design methodologies 

that exhibit a uniform standard for system decomposition, 

i'hese are top down structured design, data structured design, 

Parnas decomposition criterion and ooject oriented äesign. 

1.  Top Down Structured Design 

The top down structured design approach is based upon 

the hierarchial organization of modules. This approach 

suggests ehe decomposition of a system is achieved by making 

each step in the process a module [Ref. 6: p. 106]. This 

approach begins with the top level module designed in terms 

of the modules of the next lower level. In essence, a deter- 

mination is made as to what type of modules will be required 

on the next lower level and how they should be connected to 

form the top level module. As this is happening, no conside- 

ration is given about the detailed construction of the second 

lower level modules until the top level module has been 

satisfied. This process continues until all modules at all 
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levels are formulated in terms of the modules below them. 

This process results in program modules that are highly 

functional and well defined. The higher level modules contain 

the highest levels of abstraction, while the lower level 

modules contain the primitives of the system which implement 

operation in response to higher level actions. 

2. Data Structure Design 

The data structure design methodology converts a 

representation of data structure into a representation of 

software. Utilizing this approach, the data structures must 

first be defined, and then the program elements are struc- 

tured based upon the data structure itself. This then is an 

attempt to clearly and precisely explain the implementation 

of the objects in the solution space and then allow their 

specific structure to become visible to the essential 

functional elements that furnish the operations on the 

objects. In general, data structure design defines a set of 

"mapping" procedures that use information (data) structure as 

a guide [Ref. 3: p. 141]. This approach recognizes the 

necessity for the design of the program to reflect the 

structure of the problem. 

3. Parnas  Decomposition Criterion 

The Parnas decomposition criterion methodology is 

based upon the idea that as a system is decomposed, each 

module in the system hides a design decision from the other 
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modules. This approach is implemented through an initial 

identification of difficult design decisions or design 

decisions that are likely to change over time. Each program 

module is then designed to hide such a decision from the 

others. This results in the capture of design structures in 

the software at the level at which the design decision is 

made. If modification of the software system should become 

necessary, ability to minimize the effects of the modifica- 

tion should be readily available. This criterion also 

supports the idea that to achieve an efficient system 

implementation, the assumption that a module is one or more 

subroutines must be abandoned in favor of allowing sub- 

routines and programs to be assembled collections of code 

from various modules [Ref. 7: p. 225], 

4.  Object Oriented Design 

Object oriented design is a relatively new approach 

to software design that has developed as a result of the 

works of various people in the discipline [Ref. 3: p. 38]. 

This methodology allows the mapping of solutions directly to 

the designer's view of the problem. The object oriented 

design approach first clearly and concisely defines the 

problem. An informal strategy is then developed to provide 

initial direction toward the solution of the problem. 

Finally, the strategy is formalized. During this step, 

identification of the abstract objects at given levels in the 

38 

• »• I • T •••-...  .  .  »,  .,  .•>'»!  i  I,,   \      ;.  .  .    , . , . . , , ^ __. .  -  -  --'•-' •-' •-     •- ..»._ -  --. '-I -         -  i.- H 



"  -" .• •^~" • •  .«>'.» '•'•"• ' V . • . '   •  • . •  •  »   •  « n '-   - . •  "J '*.>    .     'K     •,'-.' 'V      > 1   I  l • • ' •.  1 • - • L  1  !•••  •   •  ,  «, • • , P. •• „ 

system takes place. The appropriate operations on these 

objects are then defined. Interfaces are established and 

operations are implemented. The last step is to develop a 

module that hides the implementation. 

This methodology provides a meaningful strategy for 

decomposing a system into modules, where design decisions are 

localized to complement the real world view. This approach 

also provides a consistent notation for choosing the objects 

and operations that form the design. The object oriented 

design approach provides an enforceable structure which 

should ease some of the complexities involved in software 

system design. 

D.  THE USE OF  PROGRAMMING LANGUAGES A3 SOFTWARE DEVELOPMENT 
TOOLS 

Software system design methodologies are not sufficiently 

capable of producing computer solutions on their own. These 

approaches require the assistance of software tools, 

particularly through the use of programming languages, to 

express and execute design. In order to discuss the evolu- 

tion of programming languages into efficient software system 

design tools, a language generation outline of the most 

popular programming languages and some language features are 

provided [Ref. 9]: 
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First Generation Languages (1954-1958) 

FORTRAN I 
ALGOL 53 
Flowmatic 
I PL V 

Second Generation Languages (1959-1961) 

FORTRAN II subroutines, separate compilation 
ALGOL 60 block structure, data types 
COBOL data description, file handling 
LISP list processing, pointers 

Third Generation Languages (1962-1970) 

PL/1 FORTRAN + ALGOL + COBOL 
ALGOL 68 rigorous successor to ALGOL 60 
Pascal simple successor to ALGOL 60 
SIMULA classes, data abstraction 

The Generation Gap (1970-1980) 

Many different languages, but none endured. 

As can be readily seen from the outline above, the more 

commonly utilized high order languages, FORTRAN and COBOL, 

came into existence in the early history of computer science, 

before the advent of the "software crisis." Accordingly, 

these high order languages were not founded on modern 

software design principles and, as a result, these languages 

had to be modified by use of preprocessors (S-FORTRAN) and 

extensions (FORTRAN-77) to bring them into compliance with 

current software design methodologies. Needless to say, 

these languages were formulated prior to the recognition and 

acceptance of the fact that large, modern software systems 

are far too complex to efficiently manage. 
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These high order languages continue to fulfill needs of 

their individual problem domains; however, since their 

creation, the large embedded computer systems domain has 

arrived. None of these high order languages was designed to 

cope with the inherent complexity associated with embedded 

systems. 

A discussion of the basic structure of these high order 

languages will demonstrate some of their intensive problems 

[Ref. 8: p. 34], FORTRAN and COBOL were both designed with 

flat structures, primarily made up of global data and one 

level of subprograms. The inherent danger associated with 

this type of structure is that an error introduced in any 

segment of a program can result in catastrophic ripple effect 

across the entire system due to the global data structure. 

Modifications to large systems utilizing these high order 

languages generally result in the disintegration of the ori- 

ginal software system design structure. Maintenance on 

programs written in these languages often produces large 

amounts of cross coupling among program units, resulting in a 

lessening of system reliability and solution clarity. 

Most of the second and third generation languages became 

capable of providing a larger nested structure for more 

complex algorithms. However, there was little or no 

improvement in the ability for describing data structures. 

The basic structure of these languages was very similar to 
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that of the first generation languages with the major 

difference being the existence of subpr ogr am s within 

subprograms. Unfortunately/ these languages were plagued 

with the same problems inherent to the first generation. 

Some languages in this generation such as SIMULA, did 

demonstrate the ability to provide greater data structuring. 

However,    these   languages   failed   to   gain   any   sizeable 

credibility. 

Assembly languages are presently the most commonly used 

languages for embedded systems. Assembly languages exhibit 

no inherent structure. As a result, assembly languages 

provide great flexibility in developing systems ana assembly 

languages can be written in structured assembly code. 

However, once a system becomes fairly large, the mere nature 

of   the   language   tends   to confuse   the  organization. 

The evaluation of fourth generation languages, such as 

Ada, are already demonstrating tremendous potential in the 

alleviation of the problems associated with the description 

of data structures. These languages are able to control 

system complexity through physically concealing unessential 

details at each system level. Their basic structure supports 

the localizing of design decisions, and maintains the 

structure of   the  original  design  as  modifications  are  made. 
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III.  SURVEY OF CURRENTLY DEVELOPING PROGRAM DESIGN LANGUAGES 

During the past several years, industry has seen an 

explosion in the cost of software production coupled with a 

decline in the quality and reliability of the results. A 

realization that structured programming, top down design, and 

other changes in techniques can help has alerted the field to 

the importance of applying advanced design and programming 

methods to software production [Ref. 1: p. 5], One of the 

most promising software system design cools to emerge from 

the appreciation of this problem has been the development of 

the program design language (PDL) concept. This chapter will 

define the program design language concept through a 

discussion of its functions and attributes, and conclude with 

a description of currently developing PDLs as outlined in 

Reference 10. 

A.  PROGRAM DESIGN LANGUAGE CONCEPTS 

The term program design language is used synonymejsly 

with other recognized software engineering terminologies such 

as pseudocode, structured English, and metacode. However, 

for purposes of discussion, the acronym PDL will be utilized 

exclusively throughout this chapter and the remainder of the 

thesis. Conceptually, a PDL is a very high order programming 

language designed to relate the logic of a program module in 
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an understandable and readable format at any given level of 

detail. PDLs were originally designed for a top down approach 

to software system design development. It is ccnsidared a 

"pidgin" language in that it uses the vocabulary of one 

language (i.e., English) and the overall syntax of another 

(i.e., a structured programming language) [Ref. 3: p. 253]. 

On the surface, PDLs appear to be very similar to the 

existing third generation programming languages developed in 

the 1960's. However, a major dissimilarity exists in the 

fact that PDLs utilize English as a narrative text embedded 

expressly inside PDL staterne -its. PDLs combine tnis narrative 

text with a formal procedural format that forces upon its 

users a programming language-like syntax which enables 

automated tools to assist in the development of detailed 

design. Presently, the combination of the narrative text 

with the formal procedures makes compilation of PDLs 

impossible. However, this set of automated tools known as 

PDL processors, make it possible to design operational 

indices, format text, produce cross reference tables and 

nesting maps, check validity of the syntax, and perform 

several other functions. 

The input to the PDL processor is comprised of control 

information and designs for procedures known as segments. 

These segments are utilized to describe the algorithms used 

in performing the mandatory steps contained in a program 
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module. They make up the interface specifications between 

modules and are used to define the functions performed *oy a 

given module. Since PDLs utilize module structure in cheir 

architectural design, each segment contains only a small 

portion of the overall system logic found within the module. 

This use of PDL segments results in the creation of 

algorithms that are more precise, easily understood, and more 

rapidly modified supporting tha 3tatsas.it :'ia~, "Tha purpose 

of a design is to communicate the designer's idea to other 

people—not   to   a   computer"    [Ref.    11:  p.   271]. 

The output from ths PDL processor is in the form of a 

working design document. This output has been recognized as 

an extremely effective replacement for conventional 

flowcharts. There are several apparent reasons why PDLs are 

effective   in  accomplishing  this: 

1. They are machine-processable, using the text editing 
facilities available in the software development 
environment. 

2. They can be easily read, so that a group of 
designers can easily review the PDL of a given designer 
to determine the quality of the design (structured walk 
through) . 

3. They are read in a top down manner and provide a 
more accurate reflection of the program structure than 
do  flowcharts  at a  larger  stage  in software development 

Through   the  example  of   simple   sorting   algorithm,   Figures 

3-1,     3-2,    and    3-3    [Ref.    19]    clearly   demonstrate    the 

overwhelming clarity inherent  in  PDL output documentation 

45 

"-*•" •- I . r  . I . I . 1 • I  . .t   i      .1.     .     ,  i.i.i.i,   Li,  i.!      -  • -  - *^j . ^_       -     - .-   •- . .. . -    -     ^   ^    .     . 



-1 -*—s • • - - i • . - . •  • • . • . ' . .  •  i ^ * • » ' i m     !•!••  •'_•  •• • . •—•—' —7-» .. •• w -, 

vice that of conventional flowchart or a third generation 

programming language (PL/I) presentation. 

SORT (TABLE, SIZE OF TABLE) 

IP SIZE OF TABLE > 1 

DO UNTIL NO ITEMS WERE INTERCHANGED 

DO FOR EACH PAIR OF ITEMS IN TABLE (1-2, 2-3, 
3-4, ETC.) 

IF FIRST ITEM OF PAIR > SECOND ITEM OF 
PAIR 

INTERCHANGE THE TWO ITEMS 

END IF 

ENDDO 

ENDDO 

ENDIF 

Figure 3-1.  PDL Design of Simple Sorting Algorithm 
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(3- APT) 

INTERCHANGED 
< FALSE 

YES 

INTERCHANGED 
< TR'JE 

SO 

TEN? <  TABLE(I; 
'A3LE< I) < TA3LEOD 
TA3LE<I*1><  TENP 

< 1*1 

FALSE 

CRETAN) 

Figure 3-2. Flowchart for Sorting Algorithm o±" Figure 3 
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SORT: 
PROCEDURE (TABLE): 
DECLARE TABLE (*) FIXED BIN: 
DECLARE INTERCHANGED BIT (1) : 
DECLARE TEMP FIXED BIN: 
IF DIM (TABLE, 1) > 1 THEN 

DO: 
INTERCHANGED = 'l'B; 
DO WHILE (INTERCHANGED); 

INTERCHANGED = 'O'B; 
DO I = LBOUND (TABLE, 1) TO 
HBOUND (TABLE, L) -L; 

IF TABLE (I) > TABLE (1 + 1) THEN 
DO: 

INTERCHANGED = 'l'B; 
TEMP - TABLE (I) ; 
TABLE (I) = TABLE (1+1); 
TABLE (1 + 1) = TEMP; 

3ND; 
END; 

2ND; 
3ND; 

END SORT; 

Figure 3-3.  PL/I Procedure for Sorting Algorithm 

These figures lend themselves to demonstrating one of the 

most important attributes of PDLs; the ability to quickly 

develop a coarse profile of a problem solution that is both 

readable and understandable by all.  This aids in design 

modification since individuals at all levels in the system 

design development phases are capable of quickly and 

accurately identifying errors and potential problems and 

ensuring  correctness.  Other characteristics that PDLs 

should comply with are: 

1. A fixed syntax of KEYWORDS that provide for all 
structured constructs, data declarations, and 
modularity characteristics. 
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2. A free syntax of a natural language that describes 
processing features. 

3. Data declaration facilities that should include  both 
1 

• * 

simple (scalar and array) and complex (linked list or 
hierarchical) data structures. 

I 
4. Subprogram definition and calling techniques that 

support various modes of interface description. 

5. A PDL should be programming-language-independent. A 
design described with a PDL should be translatable to 
assembly language, FORTRAN or PASCAL [Ref. 3: p. 253]. 

PDLs in themselves are not a panacea for the ills that 

affect software system design. However, if the PDL concept 

is utilised effectively, the goals and principles of software 

engineering can be achieved quite successfully. 

Another software design concept which is gaining greater 

acceptance throughout the discipline is that of a System 

Design Language (SDL). Whereas PDLs provide a detailed 

description of a program module, SDLs can be viewed as a 

module interface language for a format architectural 

description of a system. The SDL concept is a logical 

outgrowth of the PDL concept. An SDL ideally will identify 

those system components needed to be constructed and what 

interfaces each component provides and requires. A PDL, on 

the other hand, i 3a.it if i ss how each component is to be 

constructed. Together, these concepts form the "blueprint" 

for actual software system implementation. Although these 

concepts are closely related, a formal discussion of System 

Design Languages is beyond the scope of this thesis. 
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B.      SURVEY   OF   CONTEMPORARY   PDLS 

Several software vendors have been developing PDLs to 

assist them in the creation of software systems. This 

research and development effort has been stimulated to a 

large extent by the DOD initiative concerning the development 

of Ada for use with embedded computer systems. Many of the 

PDLs now being developed are in fact Ada-based design 

methodologies. 

Four of the most promising PDLs currently 'ander 

development   are   being   built   by   Ha^is   Corporation,   TRW,    T3M 

and Norden Systems. Each of these PDLs has a distinct syntax 

and each supports a dimunitive variation in design 

methodology.       A   brief    description   of    each    PDL   follows. 

Additionally, a matrix demonstrating ilia Ada language 

features supported by each vendor's PDL is included as 

Appendix C. 

1.     Harris  PDL 

The PDL developed by Harris exceeds the confines of 

conventional PDLs by including guidelines for the software 

development process. Harris redefines the term PDL to mean 

"Process Description Language1 to reflect the extended 

application for the language. This PDL utilizes two 

constructs  for  clarity  enhancement,   a   'call'   keyword  prior   to 
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subprogram calls and an 'engage' keyword prior to task calls. 

The Harris PDL also embodies six keywords for file 

input/output. These are 'open', 'write'/ 'read1, 'close', 

'delete', and 'create'. Harris also permits the usage of 

structured English statements in the form: VERB NOUN/OBJECT 

(OPTIONAL  MODIFIERS). 

For the program development, the Harris ?DL utilizes 

four approaches. The first approach is top-dovn partitioning 

which is used to break down the system into layers of 

mutually exclusive subsystems, which, when taken as a whole, 

totally encompass the original design. The second approach 

is known as progressive elaboration. This approach is used 

in conjunction with the top-down partitioning approach so 

that as the system is being broken down layer by layer into 

modules, detail is progressively added to the data and 

process structures. Horizontal compilation is the next 

approach. In horizontal compilation, as top-down 

partitioning occurs, aach layer 3an ba soraputed to test for 

consistent and complete partitioning as well as correct 

syntax. Vertical verification is the fourth approach. This 

method is used to insure that nothing has been left out or 

added in succeeding layers of partitioning. The Harris PDL 

effectively lends itself to the achievement and support of 

the  software  engineering  goals   and  principles. 
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2. TRW   PPL 

The TRW Corporation is developing a PDL based 

primarily on the Ada programming languages for use by the 

Department of Defense. Since the issue of the utilization of 

Ada as a PDL will be fully discussed in a subsequent chapter, 

the description of the TRW PDL will be    of limited scope. 

The TRW PDL supports the basic constructs cf the Ada 

programming language, i.e., packages, compilation units, 

tasking, generics, typing of data and data hiding. However, 

some Ada language features are not supported by this PDL. 

Simple statements such as null, procedure call, abort, and 

assignment  lack  proper   supports. 

The most significant feature of the TRW PDL is that 

it permits the insertion of narrative text into statements in 

lieu of Ada comments. Although this is viewed by Ada PDL 

supporters as a potential problem, it indicates that TRW is 

attempting to develop a PDL with a certain degree of 

programming  language   selection  flexibility. 

3. IBM  PDL 

IBM has been working on program design languages for 

several years. The methodology for the development of its 

PDL  is  focused on  the  following  design  language  requirements: 

1. Enforced     recording   of   both   interfaces   and   behavior 
specifications   as  part of   the  design of   the   software. 

2. Imposition   of     structure   while   allowing   for   free-form 
expression  of   specification   ideas. 
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3. Data declaration  facilities to allow definition of 
both individual scalar values and data groups. 

4. Definition of user defined data types. 

5. Definition and use of procedure and functions to 
provide modularity. 

6. Concurrent assignment notations that one can express 
in a design the situation of several inputs producing 
several outputs in an unspecified sequence. 

7. Encapsulation and information hiding. 

8. Formal commentary with specified format and scope. 

9. Support for stepwise refinement of the design. 

Currently utilized third generation programming 

languages possess many, but not all, of the attribute 3 lisced 

above. The growing popularity in utilizing Ada as a base for 

a design language is due to the fact that these forementioned 

attributes are directly embodied in the Ada language. I3M is 

developing, in parallel with its generic ?DL, an kda ?DL 

which encompasses these attributes with other Ada concepts. 

4.  Norden PPL 

Norden Systems has also been developing PDLs for some 

time. Their PDL is a non-compilable PDL similar to the 

Caine, Färber, and Gordon PDL discussed in Reference 11. 

This PDL 1 backs the more powerful language features such as 

strong typing, loop exits, and tasking and, as a result, 

Norden has opted to develop an Ada oriented PDL. This new 

PDL, NPDL/Ada, utilizes an Ada syntax, emboiies the major Ada 

language features yet retains the expressive freedom of the 
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English language text while embedded in the more rigid Ada 

control structures. 

The software vendors who are creating PDLs, are 

quickly recognizing the inherent value of utilizing the Ada 

programming language as a basis for the development of PDLs. 

The concepts and features that make the Ada programming 

language so conducive to utilization as a PDL will be 

discussed in the next chapter. 

54 

  . . . .   . 



•'   »•   f    F    .•    ••       •      •   ••'»•»'1"1»«PI.  «       • ••»,•»•»    I » -^»^»»»^   >     . I     •      •      .      .      ill 

IV.      EXAMINATION  OF  ADA  CONCEPTS 

A.      BACKGROUND 

The explosive growth in the cost of developing and main- 

taining complex software systems has fostered the advancement 

of a large number of techniques and theories developed in the 

area of software design and development. These theories and 

techniques include structured programming, top-down design 

and implementation, structured analysis and design, modulari- 

zation, and programming teams and walkthroughs. The central 

aim of these theories and techniques has been to attempt 

intellectual control of a software system design via systema- 

tic decomposition and abstraction of the software problem 

into component modules and subsequent composition of those 

modules into the system [Ref. 11: p. 220]. Only with an 

intellectual control and working understanding of large, 

complex software systems can the development and maintenance 

costs  of   those  systems  be  kept  in check. 

Recognizing that development of the Ada language provided 

for a unique opportunity to discard the inefficiencies of 

older generation languages while creating an entirely new 

method with which to allow intellectual control over complex 

system software, the HOLWG established three guiding 

principles or goals early in the Ada development process. 

These  goals  are: 
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- recognition of the importance of program reliability and 
maintainability; 

- concern for programming as a human activity; and 

- efficiency. 

The finalized STEELMAN document reflected the 

desirability of these three goals by mandating that the final 

Ada language support the following language features 

[Ref.   8:   p.   13]: 

- structured constructs; 

- strong typing; 

- relative and absolute precision specification; 

- information hiding and data abstraction; 

- concurrent processing; 

- exception handling; 

- generic definition; and 

- machine dependent facilities. 

B.  LANGUAGE OVERVIEW 

Of the three goals envisioned by the HOLWG, the first and 

most important was considered to be that of reliability and 

maintainability, as together these make up the largest cost 

areas in a software system's life cycle. In an attempt to 

maximize reliability and maintainability of Ada software 

systems, Ada was designed to be, and is, a design language. 

As such, it focuses primary attention upon the interconnec- 

tion of the interface characteristics of the components 
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within a system rather than upon the components themselves. 

Somewhat like the manner in which a blueprint describes the 

way things fit together without extensive detail as to what 

those "things" are, Ada emphasizes the interconnection 

between module interfaces over the structure within those 

modules. Further, it is the interface characteristics which 

actually define the components which are used in the design 

because the interface characteristics are all that the user 

of the component needs to use the component and all that the 

designer needs to design the component. This approach to 

language design specifically supports modularization, infor- 

mation hiding and abstraction as the user need not see the 

contents (how) within each module, but rather he need only 

see the interface (what) and interconnection of modules. 

This approach is also multi-tiered, as within each module 

there exists a system of interconnectivity between interfaces 

of lower level modules, down to the level where further 

decomposition becomes inappropriate. An Ada software system, 

then, can be viewed in its entirety as a single module with 

the components of that module being the interconnections of 

interfaces of lower level modules, and so on down to the 

lowest level modules  in  the  system. 

C.      OBJECT  ORIENTED  DESIGN 

A   methodology   with   which   to   approach   the   design   of   a 

software   system   where   that   system   is   intended   to   solve   real 
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world problems has been advanced by Grady Booch [Ref. 3: 

p. 40]. His methodology, called object-oriented design, 

begins with the recognition that there is a problem space 

wherein real world problems are begging of a solution* and 

there is a solution space wherein computer software and 

hardware combine to accept real world problems, process those 

problems toward solution, and inject those solutions back 

into the real world. In any programming language the 

programmer translates (abstracts) real world problems from 

the problem space (real world) to the solution space 

(software). The software/hardware system operates on these 

abstractions toward a solution by way of an abstract problem- 

solving technique (software algorithms), and the solution is 

then converted back to the real world by way of computer 

output. The primary problem with computer languages prior to 

Ada is that a considerable distance exists between the 

problem space and the solution space, resulting in the need 

to expend considerable effort in both concerting 

(abstracting) to and from the solution space and operating 

efficiently within the solution space arena. 

The closer the solution space maps to our concept of the 

problem space, the better the goals of modifiability, effi- 

ciency, reliability and understandability can be achieved. 

Most of the languages developed prior to Ada are primarily 

imperative; that is, they provide a rich set of constructs 
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for implementing operations within the solution space but are 

generally weak when it comes to abstracting real-world 

objects into that solution space. additionally, these 

languages require that the real-world problem space, which is 

both multi-dimensional in description and highly parallel in 

effect, be mapped into a solution space that has a relatively 

flat topology as well as a high dependence on sequential 

processing for solution attainment. 

The Ada language, when viewed through the window of 

3ooch's object-oriented design methodology, allows us to 

minimize the distance between the problem space and the 

solution space by emphasizing the fact that object-oriented 

design is not a purely functional design technique. Rather, 

it recognizes the importance of treating software objects as 

actors, each with its own set of applicable operations. 

The three steps to object-oriented design, along with a 

brief description of each, follows. 

1.  Define the Problem 

At this stage we remain entirely within the problem 

space, and attempt to gain an understanding of the structure 

of the problem space at hand. This step will be iterative, 

working from the general to the specific, and such tools as 

SADT and data flow diagrams are wholly appropriate in 

defining the problem. 
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2. Develop an Informal Strategy 

Once an understanding of the problem space is gained, 

an informal strategy as to how to arrive at a solution is in 

order, where that strategy parallels our view of the real 

world. This strategy is best kept within the realm of 

natural English descriptions and in terms of concepts 

existing in the problem space. In this way intuitive feel as 

to how to solve the problem is not yet lost among the 

complexities of abstraction into the solution space. 

3. Formalize the Strategy 

In this step we finally enter the realm of the 

solution space and incur the need for abstracting from the 

problem space to the solution space. From the informal 

strategy already developed, we first extract the nouns which 

represent objects in the problem space and then the 

qualifying adjectives which represent attributes in the 

problem space of those nouns they qualify. Nouns in the 

English language can be common nouns (such as table or 

chair), mass nouns (such as water or fuel), or nouns of 

direct reference (which refer to a specific object in the 

problem space). Adjectives identify the attributes or 

constraints of these nouns, and when such adjectives as 

"concurrent" and "asynchronous" are used in the informal 

strategy, the parallel nature of the problem space is 

revealed. 
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Having extracted the nouns and adjectives from the 

informal strategy as objects and qualifiers to those objects, 

respectively, we muse then extract the verb phrases occurring 

in the strategy. In doing so, we identify the real world 

operations being performed on those objects in the strategy 

and further associate each operation with a particular object 

in  the problem  space  against  which  each operation  acts. 

Perhaps the most important step in formalizing the 

strategy involves establishing the relationships among the 

objects already dsfir.ed. By this it is meant that the visible 

interfaces to each object are identified and formally 

described using Ada as the design language. By identifying 

the object interfaces and their relationships (interconnec- 

tions) , a contract is formed between the user of an object 

and the object itself, and this contract explicitly defines 

the operations which may be performed on the object by the 

user. The beauty of Ada is that it not only permits us to 

easily describe such a contract but also enforces the 

contract by preventing us from violating our logical 

abstraction. 

The contract having been made as to the permissable 

operations useable against any particular object, we can then 

implement those operations in the Ada language. This results 

in operations which are executable, and further allows the 

development  of  a  design   for   solution  to  the problem  which  is 
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also executable. The implementation of operations and the 

design for solution to the problem will naturally eeveal 

lower level objects and operations needed to support the 

present level of solution implementation. These lower level 

objects and operations can in turn be addressed, leading to 

further iterative decomposition until the point is reached 

where further decomposition will not aid in system 

understandability. 

D.  ADA LANGUAGE TOOLS 

program units, and every Ada program is made up of these 

program units [Ref. 8: p. 47]. Each program unit is made up 

of two distinct parts: a specification, which contains chose 

entities visible to other program units and which thus 

defines the external characteristics (interface) of the pro- 

gram unit, and a body, which contains the implementation 

details of the program unit where those details are not 

visible to other program units. The specification part and 

the body of any program unit can be separately compiled, 

which greatly enhances the management of designing an Ada 

software system. This is because at any level of software 

system design, it is only necessary to write the specifica- 

tion parts of the program units used at that level which can 

then be compiled resulting in the creation of an enforceable 

design structure to the problem solution. An added benefit 

62 

- • - - • - * -""*..*.'»-*T* —.• -V-Y..r« -.<—,* - . -*-,^ „,> „,,'f m..y ^jfc.., H.JJ ,—„I. ,t» 1, .,,,»••,i»..II 



I ............ , , ,    ,   ,. , t t II I 11   i   I . 1 1   1 I 11 . 

to the process of making distinct the specification part and 

body of Ada program unit?, is that it encourages both the 

construction of systems from separately built parts and the 

construction and use of libraries of generally useable 

component modules. 

Ada program units are categorized into three distinct 

areas: subprograms, tasks and packages. Each of these 

categories is explained below. 

1.  Subprograms 

Subprograms are the basic units for expressing 

algorithms and provide the means for naming definable 

functions. They have the characteristic of being sequential 

in execution and can range in scope from being the main 

program down to being a lowest level module. The subprogram 

specification defines the interface, or calling convention, 

between the subprogram and the outside world while the 

subprogram body encapsulates the algorithm for which the 

subprogram exists. The applications for Ada subprograms 

include main program units (the highest level of an Ada 

software system), definition of functional control (where the 

functions determined at one level of design are implemented 

via subprogram at the next lower level), and definition of 

type operations for abstract data (where user-defined or 

abstract data types can be linked with unique operations 

regarding those data types). 
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Subprograms have two basic forms: procedures and 

functions. A procedure provides the series of actions which 

are defined in its body whenever that procedure is invoked, 

and it may have parameters to pass information either to 

itself or back to the invoking unit. A function has the 

primary purpose of returning a calculated value where that 

value is computed within the function and returned to the 

program unit which called the function. 

2.  Tasks 

Tasks are the program units which define operations 

or procedures which execute in parallel with other tasks. 

Where most existing high-order languages provide little or no 

support for ehe parallel execution of program operations or 

procedures, Ada specifically accomplishes such parallel exe- 

cution through the use of tasks. Since the real-world 

problem space operates in a highly parallel fashion (more 

than one event occurring at a time), the task program unit 

serves to greatly reduce the distance between the problem 

space and the solution space by eliminating the need to 

convert real-world parallel events into the serial abstrac- 

tion demanded by other high-order languages. Physically, 

tasks may execute on multicomputer systems, multiprocessor 

systems, or with interleaved execution on a single processor. 

As such, tasks can be seen as individual sequential 

processes, where each process interacts with other processes 
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through a sophisticated means of communication and synchroni- 

zation among individual tasks. The term "rendezvous" applies 

to the place and time at which two individual tasks interact, 

and it is this interaction among tasks that allows, for 

instance, one task to detect and report the inaction or 

improper action of another task. Such an approach enhances 

communications reliabiliy and error detection within the 

software system. 

Like the subprogram and package, the task is divided 

into a task specification, which defines the interface 

between the task and other program units, and the task body, 

which consists of the task's executable part. 

3.  Packages 

Packages are the units used for encapsulating collec- 

tions of logically related data, objects and data types. The 

package specification defines the interface to the package 

and thus specifies which parts of the package nay be used 

and, furthermore, how they may be used. The package specifi- 

cation may be further divided into a visible and a private 

part, where the visible part declares the package resources 

which may be used outside the package, and the private part 

which, while textually available to the package user, cannot 

be referenced outside the package. The package body is 

specifically ngt accessable outside the package, and contains 

65 

** .-... . ...••,.,.,. ._..- . .. ,. .  . . . . . . . __ m __^  



• • — •^»^^^"•^ •   •       "I       •   »   •  • J • f • • 

the necessary sequence of statements relating to the package 

purpose. 

Packages are extremely versatile as to their possible 

application, and the logical grouping of objects and data 

types places the definition of those objects and data types 

in one location. This application greatly enhances 

maintainability. For instance, if changes become necessary 

within a logical grouping, only the single package need be 

changed thus ensuring consistency throughout the system for 

any program unit calling that package. 

With packages it is also possible to group logically 

related program units, namely, subprograms, tasks, and even 

other packages. The advantage here is that the algorithms or 

contents of those program units within a package can be 

changed (for, e.g., reasons of efficiency) without affecting 

the program units which call the package. Packages also 

allow the user to uniquely define an abstract data type and 

then encapsulate it in such a way as to enforce the 

abstraction through the Ada language. Thus where a set of 

data types are unique to a specific application, those data 

types and their application can be placed within a package, 

and that package will then disallow improper implementation 

of those types. 
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E.      DATA  TYPING 

The objects within the Ada language equate to the nouns 

we use in everyday English. 3ach object in Ada has a set of 

properties which denotes the kinds of values that the object 

can carry and the operations which we can apply to that 

object. This set of properties is called the object's "type" 

in Ada. The types applicable to any object in Ada must be 

specifically declared within the software system as these 

types do not exist implicitly within Ada as they do in other 

high-order languages such as FORTRAN. Data typing within Ada 

has ehe effect that objects of a given type .nay take on only 

those values that are appropriate to the type and, in 

addition, the only operations that may be applied to an 

object are those that are specifically defined for its type. 

3ecause of this, Ada is recognized as a strongly typed 

language. Strong typing within Ada provides a mechanism for 

imposing structure on the data manipulated within an Ada 

program and, in addition, directly supports several of Ada's 

recognized design needs, including maintainability, 

readability,   reliability  and  reduction  of  complexity. 

There are four intrinsic data types within the Ada 

language — scalar, composite, access and private types. 

Scalar types include both numeric types (including integer, 

fixed point and floating point) as well as enumeration types 

(which    allow    the    programmer    to    assign    ordered    sets    of 
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specific enumeration literals to be used as values in the 

program). Composite types include array types, which allow 

the collection of similar or homogeneous objects in an 

indexed form, and record types, which allow the collection of 

potentially different or heterogeneous objects within the 

record. Access types are designed to handle those objects 

which are subject to dynamic change over time and even during 

program execution, such as buffer space within a message- 

passing system or geneaological records in a data base. 

The last category of data typing, the private type, is 

the most inventive of Ada's data typing tools. Declared 

within the package specification, the private typing of 

objects serves to hide within the body of the package both 

the structure of the data used to define the type and the 

algorithms which implement the operations on that type. Only 

the names of the private types within a package are visible 

to the users of that package. The primary benefit of private 

types is that they support directly the principle or 

information hiding wherein the details of an implementation 

are suppressed in order to allow focus on the abstraction oE 

lower level modules. 

F.  GENERIC PROGRAM UNITS 

One potential disadvantage to Ada's strong typing rules 

is that multiple forms of packages and subprograms may have 

to be designed in order to process objects of different 
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types, even though the algorithms within those packages or 

,f subprograms are identical.  This is because Ada's strong 

typing rules require us to specify the type of every object 

at compilation time and, if the object's type does not "fit" 

the package or subprogram specification, it will be denied 

entry to that package or subprogram. To deal with this 

problem, Ada has as one of its tools the generic program 

unit. The generic program unit serves as a "prefix" to what 

would otherwise be a non-generic program unit and it allows 

access to the program unit for al' generic parameters named 

in the generic unit..  The benefit of the generic prograai unit 

is that a general purpose program can be written just once 

but used many times and by different program units. 

G.  INPUT/OUTPUT 

Embedded computer systems have a requirement that the 

computer communicate with I/O devices which ara oftimes 

unique to that system which has usually required that 

software coding be employed to specifically match the 

computer with its I/O devices. This coding is always tedious 

and costly and almost never portable to other systems. On 

the other hand, where only one type of formatted I/O is used 

for a particular application, most implementations of 

existing high-order languages will bind a huge routine 

library unit that will handle virtually any kind of formatted 

I/O, whether we use those features or not.  With Ada there 
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exists the ability to build I/O routines for communicating 

with unique devices and, while the routines themselves may be 

tied to the devices they serve by virtue of device 

uniqueness, the parts making up the routines as well as those 

servicing the routines, are portable. Additionally, Ada 

allows for the utilization of redefined units for I/O of 

common data types which can be selected as needed without the 

need  for  adding  any new  language  constructs. 

H.      DOCUMENTATION 

A significant advantage to using Ada in a software system 

design is that the means of documenting the structure of the 

system ultimately becomes the same means with which the 

system is implemented. In fact, where Ada is used as both 

the design and implementation language within a system, the 

maintenance of the design documentation becomes automatic 

since such maintenance is an integral part of the 

implementation process. Thus, whereas with other design 

processes the design is documented in a form wholly different 

from the implementation language and thus requires a two part 

effort in design maintenance or change, with Ada every change 

in the Ada implementation will, in principle, update the 

documentation commensurate with that change. Additionally, 

since Ada is a highly structured language, it is easy to 

maintain the original structure of the system while modifying 

the  underlying  pieces. 
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I.  LIFE CYCLE ISSUES 

Though only a very small part of the virtues and tools 

inherent in the Ada language have been touched upon here, it 

can be seen that the underlying philosophy behind Ada as well 

as the implementation tools available with Ada combine to 

form a software language system that will greatly enhance the 

ability to manage Ada software systems over their life 

cycles. Traditionally, software developers have taken a 

restricted view of the life cycie process and have treated 

each phase of a system's life cycle as an independent part. 

This approach has lead to numerous problems, including 

configuration control nightmares and sets of software modules 

that would not function together. In the end, the developers 

would complete the systems they started, although probably 

not on time and not within budget. 

Ada will not solve the software crisis by any stretch of 

the imagination. It will, however, avert the transition of 

that crisis into a software catastrophe if it is 

expeditiously and judiciously applied to prospective and 

future software development projects. It will do this by 

allowing all levels of management and implementation to 

maintain control over the systems they are tasked to develop, 

where that control today is in large part absent and sorely 

needed. 
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V.  UTILIZATION OF ADA AS A PROGRAM DESIGN LANGUAGE 

A.  PRESENT UNDERLYING PROBLEMS 

The discussion of different private endeavors to design a 

usable PDL presented in Chapter III points to a revealing and 

somewhat distressing fact: there is apparently no consensus 

as to what an Ada PDL should consist of or how it should be 

used. For example, where the Harris PDL supports all 

features of the Ada language and in fact incorporates two 

additional non-Ada constructs to add clarity, the I3M PDL is 

a strict subset to the formal Ada language, and the TRW and 

Norden PDLs allow annotations to the Ada language for use as 

a PDL. This lack of consensus is further exemplified by the 

fact that at least one vendor does not consider ehe acronym 

"PDL" as meaning program design language (in ehe case of 

Harris, the acronym means "process description language"). 

One is forced to ask under these circumstances whether 

present attempts to design and construct an effective and 

usable Ada PDL are approaching that end in the most effective 

manner. Of course the answer to this question is that the 

individual efforts, however different they may be from one 

another, each have attributes which contribute positively to 

ths desired end goal of creating an Ada PDL. It is not yet 

known which, if any, of the mentioned vendors' designs will 
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be adopted by DOD, or whether a combination of design 

attributes from among several vendor designs will be adopted, 

'//hat can be said about the different designs mentioned is 

that there is a common thread of enthusiasm and support among 

vendors that they key elements of the Ada language directly 

support the process of program design. 

But enthusiasm alone does not beget a usable end product, 

particularly in the area of software development. The 

management of a software development project is perhaps no 

different than the management of other large engineering 

projects» except that the end product is certainly less 

tangible than, say, a bridge or a ship. An ideal situation, 

and one that would greatly simplify the management of 

software engineering, would be the existence of an automatic 

program generation system as the ultimate PDL, but of course 

the discipline of software engineering has not yet progressed 

to that point. What is needed, then, is a program design 

language that will maximize the -nanageability of any software 

system development where the primary tool used in that 

development is the PDL adopted. 

B.  AN EXAMPLE OF PDL/ADA IN PROGRAM DEVELOPMENT 

Perhaps one of the most revealing studies into the 

problems inherent in the design and .implementation of a PDL 

was a study conducted by General Electric and the University 

of Maryland under contract with the Office of Naval Research 
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(ONR) in 1982 [Ref. 12]. In this study an attempt was made 

to systematically measure some of the major problems 

associated with a software development project through the 

vehicle of actually having a program design team develop a 

mock project utilizing Ada as a PDL. Following an intensive, 

month-long training program into concepts and operations of 

the Ada language, a three-member program design team set out 

to design a portion of a working ground support system for 

communications satellites. The system was already in 

existence in the programming language FORTRAN, and one intent 

of the study was to compare both the time and effort in 

development as well as the functionality of the end-product 

program with the existing FORTRAN program. 

The program development process was divided into two 

distinct phases. The first phase was the design phase and it 

involved creating a brief description of each known component 

in the system. This design phase was intended to be written 

in compilable Ada, vice flowcharts or other means, and as 

sue', this phase encouraged the use of the entire Ada language 

inventory as a PDL. The second phase involved writing a more 

precise design, including specific algorithms, complete 

interface specifications, the definition of all data types 

and the declaration of all data objects. Following the 

second phase each design component was coded in Ada resulting 

in an executable software end product. 
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The use of two distinct design phases was not initially 

set out as a requirement in the design of this program. In 

fact, at first the design team was given a free hand as to 

their design style, and they began the program design process 

with only one design phase intended. It was recognized 

almost immediately, however, that when the primary emphasis 

was to design using compilable Ada, the resulting design 

evolved as increasingly detailed threads of functionality 

rather than as complete descriptions of the system at each 

level. That is, each team member tended to follow one 

function through the various design levels, filling in 

greater detail at each lower level for that particular 

function, rather than providing a complete description of the 

system at each level before attempting further refinement at 

lower levels. As a result of this tendency at vertical 

program development vice horizontal development the two- 

phased design approach was imposed, and it was with this 

approach that the problem ran to completion. An additional 

problem was recognized after the final program design was 

completed. While the final design was judged to be a good and 

workable design, it was characterized as being a highly 

functional one and one very similar to the original FORTRAN 

based system, even though the design team had no direct 

access to the original FORTRAN design. While this may not at 

first seem to indicate a fundamental problem with the final 
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design, it does raise two issues regarding that design. 

First, the design indicated a failure to take full advantage 

of the design power inherent in the Ada language, and second 

the question is raised as to whether an alternative design 

approach was not considered, such as Grady Booch's object 

oriented design methodology [Ref. 3]. Although examples of 

data abstraction and encapsulation were presented in the Ada 

training course, the emphasis was placed on language features 

that support those ideas rather than the ideas themselves 

during training. As a result of the apparent failure to 

consider alternative design approaches in this problem, the 

study concluded that a more expansive training program would 

be advisable in future programs of this nature. Such a 

training program would specifically address alternative 

design approaches since a choice of alternatives impacts the 

initial design decisions and perhaps even the requirements 

analysis phase. 

C.  MANAGEMENT ISSUES 

From the discussion of underlying problems and the 

example of an Ada design project presented above, it becomes 

apparent that some fundamental management issues must be 

addressed before Ada (or any other new programming language) 

can be specifically implemented as a program design language. 

Some, though not all, of those issues follow. 
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1.     The  Need for  Education 

The General Electric/University of Maryland study 

reveals one of the most important management issues which 

must be specifically and comprehensively addressed before Ada 

can be adequately designed into and utilized as a PDL—the 

need to re-educate designers in the Ada language. The primary 

reason for this need is that virtually all of today's 

programmers and program analysts were trained to understand 

the conventional process oriented-design methodology as the 

only means with which to design or program computer software. 

While process-oriented design is not in and of itself "bad" 

design methodology (it has been the primary means of software 

design since the onset of the computer age), it does have 

limitations in its application to program design primarily 

because it focuses attention on "how" processing is taking 

place rather than on "what" is being processed. The usual 

result of this focus has been that program designers have 

tended to devote too much energy toward the intricacies of 

the software itself while losing sight of the overall purpose 

for which the software was created. Such a focus usually 

results in software that is so overly complex and interdepen- 

dent as to require the injection of patchwork languages just 

to get the software system to work, with a resulting product 

that is all but unmanageable. This is the single most iden- 

tifiable  cause of   the  present  software   crisis. 
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If the tools available in Ada are to be effectively 

utilized in the design of a PDL, then those responsible for 

that design must be highly versed in the object-oriented 

design strategy and methodology. The shift in one's thinking 

away from process-oriented design and toward object-oriented 

design requires more than a shift in method or technique; it 

requires a fundamental shift in software design philosophy. 

The required shift in thinking is so fundamental, in fact, 

that some have argued that the untrained might be easier to 

educate in the object-oriented design methodology than those 

already trained in process-oriented design [Ref. 13]. There 

is a clear need, then, to ensure adequate education for the 

designers and users of the Ada PDL, as well as for the users 

of the language itself In applications programs. 

2.  The Need for Standardization 

Clearly the present software crisis will only be 

replaced by a new software crisis if adequate controls as to 

standardization are not enforced in the Ada environment. 

Each of the four vendors mentioned in the SofTech study had a 

unique approach as to what a PDL should do, and how to design 

a PDL in the Ada language [Ref. 10: p. 3-13], Somewhat 

distressing is the fact that two of the vendors introduced 

annotations to the Ada language in an attempt to create their 

respective versions of an Ada PDL, which suggests the 

possibility that a whole new group of branch languages might 
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eventually evolve from the present Ada language. One of the 

basic precepts to the creation of the Ada language was to 

discourage such branching in an effort to maintain 

manageability and maintainability  of  Ada  software. 

In designing an Ada PDL or any other Ada based 

software, it is imperative that we not lose sight of the 

original intent of the language as put forth by the HOLWG— 

that or maintaining standardization of the language's 

application. Some diversion from the original language may 

be necessary in order that a workable end product be 

developed, but that diversion should at all costs be xept co 

a minimum. 

3.     The  Need   for   Horizontal Vice Vertical  Design 

Ada has been described as an ideal tool in the design 

of both program design languages (?DLs) and system design 

languages (SDLs) [Ref. 14]. //here a PDL describes how each 

component in the software system is to be constructed 

(including control flow), an SDL description shows what 

components need to be constructed and what interfaces each 

component provides and requires. The two features of Ada 

which distinguish it from other languages and which make it 

an ideal program and system design tool are that it is an 

object-oriented language and that all packages and 

subprograms are broken down into specifications and bodies, 

each of   which  are     separately compilable. 
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The beauties of an object-oriented design structure 

have already been touched upon—they discourage designers 

from getting "lost" in the intricacies of the solution space 

while forgetting the purpose for which the software system 

was created in the first place. The primary beauty of 

separate compilability between specifications and bodies is 

that it allows the emphasis to be placed on horizontal 

development within a system or component prior to the need 

for vertical development within that system or component. By 

horizontal development, it is meant that all elements or 

components existing within a certain level of heirarchical 

structure could be specified and developed as needed within 

that level of heirarchical structure prior to the need for 

developing other lower level components and structures. The 

fact that package and subprogram specifications and bodies 

can be separately compiled allows a tremendous amount of 

design freedom as well as a true simultaneous top-down- 

bottom-up design that enforces a modular and component 

discipline on the system designer and system implementer. It 

also allows a system designer to remain within the confines 

of the heirarchical level in which he was tasked to design 

without being overly concerned with the implementation 

details of a lower level upon which his heirarchical level 

will ultimately depend. An example of where separate 

compilability of   program   specifications  and  bodies  can be 
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used is in the process of prototyping; where a simple and 

very high level system structure could be designed using 

program specifications as 'stubs' in place of the called 

program units. In this way the correctness and completeness 

of the initial design structure could be verified through 

compilation at a very early state in design and with a mini- 

mal investment of effort or time. Whether used in prototyping 

or other design strategies, the separate compilability fea- 

ture of Ada is in direct support of the software engineering 

principles of abstraction and information hiding, and further 

directly  supports   heirarchical  design  methodologies. 

As revealed in the General Electric/University of 

Maryland study, however, the Ada language in and of itself 

will not specifically prohibit non-conformance with a 

heirarchical design structure; it only encourages its use. 

The enforcement of heirarchical design must in the end be 

considered an essentially human endeavor, and perhaps the 

most valuable tool to ase in this endeavor is that of 

structured walkthroughs during each phase of program Or 

system development. Thus at any level of heirarchical 

design, the specifications of packages and subprograms within 

that level could be developed horizontally until the entire 

level was complete, after which that level could undergo the 

process of structured walkthroughs and specification 

compilation    within    that    level.        Only    after     it    was 
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demonstrated that the level was complete and operable as to 

the various operations occurring within that level would the 

element of vertical development take place. That is to say, 

after it has been determined that the specifications within 

the present level of development are complete and operable, 

the program bodies belonging to each compiled program 

specification could then be developed. Of course once the 

vertical boundary between specification and body was crossed 

(a new level of heirarchical structure entered), the 

horizontal development requirement would have to be re- 

imposed within that new level, and the process of 

development, walkthroughs and compilation of program bodies 

(and specifications of even lower level program units called 

as a result of those bodias), would begin anew. This 

iterative process would continue in a horizontal-vertical- 

horizontal fashion until the entire system was complete. 

Regardless of whether Ada is utilized as a PDL or as an SDL, 

the need to employ this iterative, vertical-horizontal- 

vertical technique remains if the true value of Ada's 

features are to be realized in system design. 

4.  The Need for Support of Software Principles 

In the design of any software system or of a PDL or 

SDL for utilization in the design of software systems, the 

fact remains that the software engineering principles of 

abstraction, information hiding, modularity, localization, 
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uniformity, completeness and confirmabi1ity muse be 

maintained. Since it is people and not machines or languages 

that ultimately perform the process of software design, 

regardless of the programming or design language used, it is 

incumbent upon the people involved in system design, to 

ensure that these principles are continually enforced. As 

such, the enforcement of these principles is a management 

issue and not a language design issue. 

The use of Ada as a PDL or SDL is not, after all, a 

design methodology in and of itself, but rather simply a 

method by which design can be represented. Put another way, 

Ada as a PDL is a concise and meaningful way to put down what 

is in the mind of the designer,but it will not by itself 

perform the design process. Ada will, however, greatly 

enhance the design process by virtue of the fact that it, 

more than any other language available, directly supports the 

software principles mentioned above. 

D.  LANGUAGE DESIGN ISSUES. 

In addition to the management issues mentioned here, 

which are in effect applicable to the design of any software 

system, PDL or SDL, regardless of language implementation, 

there are specific language design issues which must be 

addressed prior to incorporating the Ada language into a 

specific SDL or PDL. At present there exists no single Ada 

based SDL or PDL as the accepted design within the DOD. 

83 



......,.,.   i !,,,..   .   .   ,  ,   j.  .. • .   ...   . I .   |   • . | i ! . | . | . , . .. .  .   •   , •      ,   ,   !   ,   ,   |   ,   .I,,.,   ,   ,   , 

However, as mentioned in Chapter III, a number of ongoing 

development projects are underway under the auspices of DOD 

contract. While the projects differ in varying degrees as to 

language specifics, the approaches taken by the different 

vendors involved are quite similar. All, for instance, make 

use of the major Ada language features, though each makes use 

of those features at varying levels of implementation and 

effect. 

In attempting to examine which Ada based PDL the DOD 

should ultimately adopt for use, it is appropriate to 

consider the necessary and desired features to include in 

that PDL, as well as the support environment within which the 

PDL will exist. The remainder of this chapter will be 

devoted to an examination of these features. 

1.  An Ada PDL Should be Applications Flexible 

An Ada PDL should be'versatile enough so as to allow 

its application at all levels of program design and 

development, regardless of program type or coding language. 

For example, if a design team is utilizing an Ada PDL in the 

design of a complex missile launch and guidance system, the 

use of the Ada PDL tool should not be constrained to any 

particular level or group of levels n the design heirarchy, 

but should instead be design-level independent. As such it 

should allow short-iteration prototyping at the highest 

levels of design while simultaneously supporting design of 
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the system's lowest level modules. Only with such design 

level independence will the Ada PDL allow true top-down- 

bottom-up system and module design. 

2. An Ada PDL Should Not Subset the Ada Language 

By this it is meant that an Ada based PDL should 

recognize the entire Ada syntax, rather than a subset of that 

syntax. The reason for this is that an Ada PDL which subsets 

the Ada language serves to restrict the available use of that 

language to the extent that the PDL is subsetted. In the 

same manner in which a person who relies solely on a pocket 

dictionary of the English language denies himself of many of 

the rich English words and constructs available in a more 

comprehensive dictionary, an Ada PDL which subsets the Ada 

language denies its users of some of the richness available 

in the Ada language. 

3. An Ada PDL Should Include English Narratives 

One major difference between most PDL's and high- 

level languages is that the PDL's use narrative text embedded 

directly within their statements. The purpose of this 

narrative text is to enhance understandability of both the 

individual statements and the design language as a whole. 

Another benefit is that since each PDL statement can be 

explicitly described to the user via a standardized narrative 

text format, there is far less confusion as to the purpose 

and  intent of each PDL statement.   The enforced 
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standardization serves to enhance the maintainability and 

transportability of both the PDL language itself/ and the 

software systems and modules whose designs are a product of 

the PDL. 

The use of English narratives serves also to 

encourage abstraction, the omission of implementation details 

where those details are unimportant to the present 

heirarchical level being designed. For example, if a 

prototype system were being designed using an Ada PDL, only 

the specifications to those program units being called by the 

prototype need be identified, with the associate:! program 

unit bodies being described only generally within the 

narrative text attached to the specifications. When the 

prototype was complete, it could then be compiled and checked 

for completeness and correctness as to the prototype alone 

and without regard for lower level implementation details. 

Once verified as complete and correct, those lower level 

details could be addressed, using the narrative text as a 

starting point. In this way, narrative text provides an 

effective vehicle with which to iteratively progress from a 

high level design to succeedingly more detailed program 

descriptions existing at lower levels in the system's 

heirarchy. 

Unlike most other PDL's, an Ada based PDL allows the 

simple   and   safe   inclusion   of   English   narrative   text   without 
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effecting compilability of the PDL or its statements. As 

such, it is most important that an Ada PDL include extensive 

use of narrative text, and that that narrative text encourage 

abstract design level description rather than detailed 

coding. 

4.  An Ada PDL Should Allow Annotations 

An Ada PDL should include a mechanism for expressing 

annotations which extend the Ada language in its application 

to a PDL. A primary purpose of annotations is to allow the 

expansion of Ada's KEYWORD dictionary so as to better match 

that dictionary to the particular needs of the PDL 

application. Annotations would best be used to provide 

additional design information or to impose requirements on 

the designer, such as specialized forms of Ada comments. It 

is not suggested that a specific set of annotations be 

adopted, but rather that a standard mechanism be identified 

to indicate annotations and that the use of annotations be 

encouraged in program design. The placement of specific 

annotations could be required to occur as a preamble to a 

design module or to precede particular PDL statements where 

appropriate. In addition to a standard means with which to 

express annotations within the PDL, a common Ada PDL 

processor which recognizes the annotation format and calls 

appropriate subroutines could be designed so as to ease the 

expandability of the annotation inventory. 
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There is of course a danger in the unchecked 

expansion of an Ada PDL through the use of annotations in 

that without some control, the PDL to which those annotations 

are added can become overly complex and ultimately 

unmanageable. Thus whereas annotations would provide a 

valuable tool in the flexibility of an Ada based PDL, their 

use  should  be  judiciously controlled. 

5.     An Ada  PDL Should be  Supported  by  Automated  Tools 

One of the most valuable elements to be included in 

the Ada PDL environment would be that of an extensive 

automated tool inventory to assist in error-checking, design 

formatting and design editing. The Minimal Ada Programming 

Support   Environment    (MAPSS) ,    as   defined   by   the   STONSMAN 

document,   suggested' that  certain  tools  be   included   in   the  Ada 

language   support   inventory   text   editor,   compiler   and   linker. 

As   a  minimum   requirement   to   the   Ada   PDL   support   environment 

there   should  be   an  Ada  compiler   so  as   to  ensure  proper   usage 

of   the  Ada   language   and   minimize   CPU   time   investment   during 

program  design.     A PDL processor  would be preferred over  a 

compiler   since   it   would   allow   the   processing   of   annotations 

as  well as the checking of errors in such a way as  to report 

those   errors   in   a   manner   compatible   with   design   rather   than 

implementation.     Examples of errors that would be reported 

with   a   PDL  processor   are   undefined   subprograms   or   variables 

appearing   in  the  program  design.     A third  valuable   tool  would 

88 



. .- - - -i------  •%-.-- -.-.--.---» V «. _'.\_w.  '. '    k -—• • -." I "-"."-» . •». -.-•••-•• 

be that of an Ada PDL text editor, where the purpose of such 

an editor would specifically be to encourage design rather 

than code in developing Ada PDL descriptions. 

Another tool that could be of considerable value in 

the management of program design would be a graphics 

generator capable of generating data flow diagrams (DFD's), 

input-processing-output (IPO) charts, and flowcharts directly 

from the program being designed. While such a tool would 

perhaps need to be quite complex in order to perform the 

function of creating graphics directly from program code, the 

benefits possible from having automatically generated 

pictorial representations of programs under design are 

substantial. There is, for instance, perhaps no better way 

to convey the structure and purpose of a complex software 

program from one human being to another than through the 

vehicle of DFD's and IPO charts representing that program. 

An additional benefit of having an automatic graphics 

generator would be the ability to 'stand back' and view a 

graphical representation of the system under design at any 

desired point in time. Such a feature would further 

contribute to the proper placement of emphasis on the 

management of program design over the concern for 

implementation details, thereby helping to maintain control 

over the design process. 
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Regardless of which of the automated tools mentioned 

are developed for use with an Ada PDL, the Ada language is 

unique in its ability to support such tools once they are 

developed. The reasons for this lie primarily in Ada's 

strong typing and ability to support separate compilability 

of program unit specifications and bodies. Since all objects 

in Ada are explicitly defined and all interfaces specified, 

the task of creating a program structure and then checking 

that structure for completeness and correctness is 

significantly simplified, whether that task is performed 

manually or  by machine. 

6.     An Ada PDL  Should  be Well  Documented 

Adequate documentation is a necessary element to any 

PDL, and an Ada based PDL is no exception. Documentation in 

the case of an Ada PDL should include a requiremants 

document, an Ada PDL reference manual, an Ada PDL users guide 

and an Ada PDL processor users manual. These documents will 

be needed to establish a philosophy of Ada PDL usage and will 

be necessary for proper use of the Ada PDL. In addition they 

will serve to promote the wide-spread use of the Ada PDL for 

program   design. 

An additional form of documentation exists in the 

narrative text section of appropriate Ada statements, in that 

this narrative text serves in part to explain to the user the 

function  and  purpose   of   the   associated  Ada   statement.      In 
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this sense Ada is a self-documenting language, and the 

advantages possible through this self-documenting feature 

cannot be overstated. If, for example, a program designer 

using an Ada POL was unsure as to the function of any 

particular statement within the POL, he should be able to 

determine that function almost immediately simply by reading 

the narrative text attached to the statement. If he were 

still unsure, he could then consult the appropriate external 

publication, though such external consultation should be 

unnecessary if the tool of narrative text is exploited fully 

by the designers of the Ada PDL. 
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VI.  CONCLUSIONS AND RECOMMENDATIONS 

A.  CONCLUSIONS 

Perhaps the single most important contributing factor to 

the present software crisis has been the failure on the part 

of software programmers and program designers to maintain a 

proper perspective on the need for management of the software 

projects they are tasked to accomplish. This failure is in 

part due to the fact that inadequate nanagement style has 

been the rule rather than the exception, regardless of the 

software project involved or design language used; and in 

part due to the fact that, until Ada, there has been no 

language that tended to encourage a proper management style 

simply by virtue of language design. 

The intent of this thesis has been first to explore the 

genesis of the present software crisis, to explore the 

various tools available in the Ada language which could be 

used to help avect future crises in software development, and 

lastly to address the applicability of the Ada language to 

its specific role as a program design language. It can be 

concluded from the points raised in this thesis that Ada is a 

far better candidate for implementation as a PDL than any 

other language presently in existence, and that the DOD 
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should place a very high priority on the design and 

implementation of the Ada language as a PDL. 

Another important conclusion that can be drawn from the 

points raised in this thesis is that a definite shift in 

management policy and procedures must take place before the 

software crisis can be totally overcome. That is, management 

must shift its philosophy away from the perspective where 

piecemeal vertical software design and .naiptenance is 

tolerated; toward the perspective where comprehansive and 

horizontal design management is enforced. 

3.  RECOMMENDATIONS FOR FOLLOW-ON WORK 

Tha authors recommend research be conducted at the Naval 

Postgraduate School in the following areas: 

- Research tha utility of implementing Ada a3 a language 

for use in software design at the Naval Postgraduate 

School. 

- Utilization of Ada as a design language for use in 

embedded weapons systems such as Harpoon and Tomahawk. 

- Continue research into use of Ada PDL as a compilable or 

non-compilable design language. 
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APPENDIX A 

GLOSSARY 

ABSTRACTION: The process of viewing a problem at a level 

of generalization where that level of generalization does not 

consider irrelevant lower level details. Abstraction can be 

likened to a "black box", where the person using or viewing 

the black box is concerned only with the functions of the 

black box as a whole and is not concerned with the elements 

making up the box. The use of abstraction allows one t: view 

concepts and terms in the problem environment without having 

to transform them to the more detailed and less familiar 

solution environment. 

ABSTRACT INTERFACE: Allows inputs into or outputs from a 

module to match changes in inputs or outputs so as only to 

effect the abstract interface code and not lower level code 

within the module. 

ACCESS TYPE: A type whose objects are created by 

execution of an allocator. An access value designates such 

an object. 

BODY: A program unit defining the execution of a 

subprogram, package or task. A body stub is a replacement 

for a body that is compiled separately. 

BOBBLE DIAGRAM:  See Data Flow Diagram (DFD). 
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CHARACTER: Any of the ASCII symbols that are used to 

form source Ada programs or are used as data. Graphic 

characters have a visible representation, while control 

characters have visible attributes that are implementation 

defined. Source programs are ruilt from the graphic 

characters plus control characters which designate passage to 

a new line. 

COLLECTION: The entire set of allocated objects of an 

access  type. 

CORRECTNESS: A program is correct if it performs 

properly the functions it was intended (specified) to do and 

has  no  unwanted  side effects. 

COMPILATION UNIT: A program unit presented for 

compilation as an independent text. It is preceded by a 

context specification which names the other compilation units 

on which it depends. A compilation unit may be the 

specification or body of a subprogram or package, including 

generic  units  or   subunits. 

CONTEXT SPECIFICATION: Prefixed to a compilation unit, 

defines  the  other  compilation  units  upon  which   it  depends. 

CONVERSION: The process of translating from one type to 

another . 

COUPLING: A measure of the relative independence among 

modules. 
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DATA FLOW DIAGRAM (DPD); A graphical tool used to depict 

data (information) flow within a system and between modules. 

DECLARATION: Associates an identifier with a declared 

entity, including objects, types, subprograms, tasks, renamed 

entities, numbers, subtypes, packages, exceptions, and 

generic units. 

DEBUG: The process of detecting and correcting errors in 

a procedure, system, process or module. 

DECLARATIVE PART: A sequence of declarations and related 

information such as subprogram bodies and representation 

specifications that apply over a region of program text. 

DERIVED TYPE: A type whose operations and values are 

taken from those of an existing type. The existing type is 

called the parent type. 

DISCRETE TYPE: A type with an ordered set of distinct 

values. The discrete types are the enumeration and integer 

types. Discrete types may be used for indexing and iteration 

and for choices in case statements and record variants. 

EMBEDDED COMPUTER SYSTEM: A computer system that forms 

part of a larger system whose purpose is not primarily 

computational, such as a weapons system or process controller. 

EMBEDDED PROGRAM: A computer program that is part of 

some larger entity and essential to the proper operation of 

that entity.  For example, the program which serves to 
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identify different aircraft in flight is embedded within the 

I . air traffic control system. 

- * ENTITY:  Anything that can be named or denoted in a 

program.  Objects, types, values and program units are all 

entities. 

ENTRY: Used for communication between tasks. 

Externally, an entry is called just as a subprogram is 

called. 

ENUMERATION TYPE: A discrete type whose values are given 

explicitly in the type declaration. These values may be 

either identifiers or character literals which are considered 

enumeration literals. 

EXCEPTION: An event that causes suspension of normal 

program execution. An exception handler is a piece of 

program text which specifies a response to the exception and 

the execution of such a program text is called handling the 

exception. 

EXECUTE: To carry out an instruction or to perform a 

routine or set of routines. 

EXPRESSION:  Part of a program that computes a value. 

FLOWCHART: A graphical tool used to show sequence and 

control of program or module logic. 

FUNCTION: The name given to one or more statements that 

perform a specific task. 
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GENERIC PROGRAM UNIT: A subprogram or package specified 

with a generic part. A generic clause contains the 

declaration of generic parameters, which may be types, 

subprograms or objects. In the generic specification these 

are called generic formal parameters. When the unit is 

instantiated the formal parameters are matched with the 

actual parameters. A generic program unit may be thought of 

as a possibly parameterized model of program units. 

Instantiated program units define subprograms and packages 

that can  be  used directly  in a  program. 

IDENTIFIER: One of the basic lexical elements of the 

language. An identifier is used as the name of an entity or 

a  reserved word. 

INFORMATION HIDING: Specification and design of -ncdules 

such that information (procedures and data) contained within 

a module are inaccessible to other modules which have no need 

to  know the  information. 

INTERFACE: Communication between modules governed by a 

set of  assumptions one module makes  about another. 

LEXICAL UNIT: One of the basic syntactical elements 

making up a program. A lexical unit is an identifier, a 

number, a character literal, a string, a delimiter or a 

comment. 

LIBRARY DNIT: A compilation unit that is not a subunit 

of  another  unit and  which  belong  to a program  library. 
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MAINTENANCE: The phase in a system's life cycle 

following development, acceptance and installation. 

MODULE: A separately addressable element within a 

program. 

MODULAR DESIGN: A logical partitioning of software into 

elements that perform specific functions or subfunctions. 

OBJECT: A variable or constant. An object can denote 

any kind of data element, whether a scalar value, a composite 

value, or a value in access type. 

PACKAGE: A program unit specifying a collection of 

related entities such as constants, variables, types, and 

subprograms. The visible part of a package contains the 

entities which may be used from outside the package; while 

the private part contains structural details that ar« 

irrelevant to the user of the package but complete the 

specification of the visible entities. The package body 

contains the implementation of subprograms or tasks (possibly 

other packages) specified in the visible part, 

PARAMETER: One of the named entities associated with a 

subprogram, entry, or generic program unit. A formal para- 

meter is an identifier used to denote the named entity in the 

unit body. An actual parameter is the particular entity 

associated with the corresponding formal parameter in a sub- 

program call, entry call, or generic instantiation. 
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PRIVATE TYPE: A type whose structure and set of values 

are clearly defined but not known to the user of the type. A 

private type and its applicable operations are defined in the 

visible part of the package. 

PROGRAM LIBRARY: Part of the Ada program support 

environment data base recognized by the Ada compiler, 

consisting of a collection of compilation units. 

PROGRAN OHIT: Any of the three primary structures making 

up an Ada system; namely, subprograms, packages and tasks. 

RANGE: A contiguous set of values of scalar type. A 

range is specified by giving the lower and upper bounds for 

the values. 

RENDEZVOUS: The interaction that occurs between two 

parallel tasks when one task has callad'the entry of the 

other task and a corresponding accept statement is being 

executed by the other task on behalf of the calling task. 

REQUIREMENTS ANALYSIS:  The third step in the software 

engineering procedure and the last step of the planning 

phase.  Describes the software by identifying the interface 

details and an in-depth description of functions; determining 

design constraints and defining software validation 

requirements. 

ROBUSTNESS: The ability of a program or software system 

to handle unforeseen environmental changes (such as hardware 
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failure)    and   demands    (such   as   data)    in   a   "graceful"   or 

reasonable  fashion. 

SCALAR TYPES: A type whose values have no components. 

Scalar types comprise discrete types (enumeration and integer 

types)   and real  types. 

SOFTWARE ENGINEERING: Software implementation of a 

problem solution approached by using a set of techniques that 

are application independent. These techniques are: (1) a 

well-defined methodology that addresses a software life cycle 

of planning, development and maintenance; (2) an established 

set of software components that documents each step in the 

life cycle and shows traceability from step to step? and (3) 

a set of predictable milestones that can be reviewed at 

regular   intervals  throughout  the  software  life cycle. 

SOFTWARE PLAN: The second step in the software 

engineering process. Provides a framework enabling the 

manager to make reasonable estimates of resources, cost and 

schedule. 

STATEMENT: As opposed to a declaration which defines an 

entity, the execution of a statement causes some action to be 

performed. 

SUBPROGRAM: An executable program unit, possibly with 

parameters for communication with its point of call. A 

subprogram declaration specifies the name of the subprogram 

and   its   parameters;    a   subprogram   body   specifies    its 
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execution. A subprogram may be a procedure which performs an 

action or a function which returns a result. 

SYSTEM: A collection of elements related in a way that 

allows accomplishment of some tangible objective. 

SYSTEM DEFINITION: First step in the software planning 

phase where attention is focused on the system as a whole. 

Functions are allocated as to hardware, software, and other 

system elements based on a preliminary understanding of 

system requirements. 

TASK: A program unit that may operate in parallel with 

other program units. A task specification establishes the 

name of the task and the names and parameters of its 

entities, while a task body defines its execution. A task 

type is a specification that permits the subsequent 

declaration of any number of similar tasks. A task is said 

to depend upon the unit in which it is declared (subprogram 

body, task body or library package body). A unit is not left 

until dependent tasks are terminated. A task is completed if 

it is waiting at the end of its body for any dependent tasks 

or is aborted but not yet terminated. A completed task 

cannot be called. A terminated task is, in a sense, the same 

as a dead task (it is no longer active). 

TYPE: Characterizes a set of values and a set of 

operations applicable to those values. A type definition is a 

language construct introducing a new, unique type, whereas a 
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subtype creates a compatible (possibly) constrained 

definition of the base type. A type declaration associates a 

name with a  type  introduced  by  a  type definition. 

VISIBILITY: At a given point in the program text, he 

declaration of an entity with a certain identifier is said to 

be visible if the entity has an acceptable meaning for an 

occurrance  at  the  point of   the   identifier. 
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APPENDIX B 

ACRONYMS AND ABBREVIATIONS 

APSE 

DARPA 

DFD 

HARRIS/PDL 

HOLWG 

KAPSE 

MAPSE 

ONR 

PDL 

RFP 

SDL 

Ada Program Support Environment 

Defense Advanced Research Projects Agency 

Data Flow Diagram 

Process Description Language 

High Order Language Working Group 

Kernel Ada Program Support Environment 

Minimal Ada Program Support Environment 

Office of Naval Research 

Program Design Language 

Request for Proposal 

System Design Language 
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• APPKNDIX C 

PDL VS. ADA COMPARISON 

....... 

Language Features HARRIS TRW IBM NORDEN 

Commentary: 
Comments: X - X X 

Pragma: - X - - 

Declarations: 
Types 

Scalar Types: 
Array Types: 
Record Types 
Access Types: 
Private Types: 
Derived Types: 
Sub Types: 
Limited Private: 

Object Declarations: 
Simple Declarations: 
Array Declarations: 

Discriminants and Variants 

X X X X 
X X X X 
X X X X 
X X X :< 
X X X X 
X X X - 
X X X X 
X X X X 

X X X X 
X X X X 

Names & Expressions 
Attributes: 
Slices: 
Aggregates: 
Expressions: 
Type Conversions: 
Qualified Expressions: 
Overloading Opertors: 
Allocators: 

Statements: 
Label: 
Assignment: 
If (ELSE-ELSIF): 
Case: 
Loop: 
While: 
For: 
Blocks: 

X X X X 
X X X X 
X X X X 
X X X X 
X - X - 
X X X X 
X X X X 
X X ~ X 

X X — X 
X - X X 
X X p X 
X X X X 
X X p X 
X X X X 
X X X X 
P X X X I 
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Exit: 
Return: 
Goto: 
Null: 

Subprograms: 
Procedures: 
Procedure Call: 
Functions: 
Function Call: 
Positional Parameters: 
Named Parameters: 

Packages: 
Specification: 
Body: 

Visibility: 
Use: 
Rename: 

Tasking: 
Task Types: 
Entry: 
Accept: 
Delay: 
Selective Kait: 
Conditional Entry Call: 
Timed Entry Call: 
Abort: 

Program Structure: 
Compilation Units: 
Subunits: 
With: 

Exceptions: 
Handlers: 
Raise: 
Suppress Pragma: 

Generics: 
Subprogram: 
Packages: 
Instantiation: 

HARRIS TRW IBM NORDEN 

X X p X 
X X X X 
- X - X 
X — X X 

X X X X 
X - X X 
X X X X 
X - X X 
X - X X 
X — X X 

X X X X 
X X X X 

X X X X 
— X — • 

X X M X 
X X - X 
X X - •r 

X X - X 
X X - X 
X X - X 
X X - X 
X — 

• X 

X X X X 
X X X X 
X X X X 

X X X 
X - - X 

X 
X 
X 

X 
X 
X 

X 
X 

X 
X 
X 
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HARRIS TRW   IBM NORDEN 
i 

e» Representation: j 
Length: X —     — — .-. 
Enumeration: X —     — — i 

Record: X -     - - I 
Address: X - - j 
Machine Code Insertion: X V 

I/O: 
Package Input-Output: X —     — — 

Package Text-IO: X -     - — 1 

Get: X -     - - • 

Put: X - - y 
Read: X -     - - 

Write: X - - '• 

Package Low-level-ID: X - - 
' ti 

Send-Control: X - - -.; 
Receive-Control: X J 

V 

i 

X : Supported h 
- : Not Supported .; 
P : Partially Supported 

| 

1 

.'1 • 

• 
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